

#### **Lecture outline**



- I. Description and specificities of the ELT and VLT(I)
  - > Observing techniques
  - > Observational challenges
  - Performances
- > II. Complementary science with the ELT/VLT(I)
  - Structure of protoplanetary disks
  - Composition of planet forming material
  - > The inner regions of protoplanetary disks



#### Sensitivity figures (mid-infrared)

¤ ¤ ,





#### **Observing constraints**



Spatial resolution

| HARMONI/MICADO [H]      | METIS [L]     | METIS [N]     |
|-------------------------|---------------|---------------|
| 10 mas (1.5 au @ 140pc) | 20 mas (3 au) | 50 mas (8 au) |

Sky coverage (but no laser guide star)







#### Sensitivity figures (mid-infrared)



- Point source sensitivity vs extended source sensitivity = telescope size "matters" vs. "does not matter"
- Contributions: photon noise/thermal background, detector noise → huge difference between ground and space



#### Sensitivity figures (mid-infrared)

-10



500

600 -500 -

0

0



[Butscher 2020, METIS Consortium]





## **Eps Indi Ab**





[Matthews 2024]

VISIR/NEAR experiment (+AO), Kasper et al. 2017





#### High contrast imaging





#### N-band contrast curve



[Quanz 2018, Absil 2024]



#### **Lecture outline**



- I. Description and specificities of the ELT and VLT(I)
  - Observing techniques
  - > Observational challenges
  - > Performances
- > II. Complementary science with the ELT/VLT(I)
  - Structure of protoplanetary disks
  - Composition of planet forming material
  - > The inner regions of protoplanetary disks



#### The AB Aur case





[Currie 2022]









#### AB Aur's disk in the mid-IR





- Bulk of N band compact emission located within ~15 AU
- Faint emission detected out to 280 AU and 350 AU in N and Q bands, respectively → Thermal emission ?



#### AB Aur's disk in the mid-IR





- Bulk of N band compact emission located within ~15 AU
- Faint emission detected out to 280 AU and 350 AU in N and Q bands, respectively → Thermal emission ?



#### AB Aur's disk in the mid-IR





- Predicted color temperature (obs/model): 220 K / 103 K , 190 K / 59 K , 220 K / 46 K
- Invoke small (~0.1µm) grains or mixture with PAHs



#### Polarization map at 10µm





- CanariCam with Dual Beam Polarization mode on 10.4-m **segmented** GranTeCan telescope
- Two components in the polarization map: magnetized region vs. scattered light region



#### Polarization map at 10µm







- CanariCam with Dual Beam Polarization mode on 10.4-m **segmented** GranTeCan telescope
- Two components in the polarization map: magnetized region vs. scattered light region



#### **Towards ELT resolution**

- Resolving gaps with METIS in the N band
- Complementarity of near-IR, mid-IR and sub-mm imaging
- Mapping the distribution of grains with different sizes



Resolution 0.3" at 10µm. Imaging the PAH distribution only at large radii >50 au



¤ ¤

Simulation of METIS 10 $\mu$ m imaging of a disk at 150pc around a solar-type star with an embedded planet at ~20 au. The linear scale is 30au. Comparison to ALMA imaging in Band 7

[MST 2022]



#### Gas dynamics in the inner disk



Kinematic signatures of circumplanetary disks with METIS in CO at 4.7µm



[Oberg, Kamp 2023]



### Gas dynamics in the inner disk



- Kinematic signatures of protoplanets at ~10 au --> ~ PSF scale
- Dynamics of the (atomic, molecular) gas at <1 au scale with spectro-astrometry --> ~0.02xPSF





#### Gas dynamics in the inner disk



- Kinematic signatures of protoplanets at ~10 au --> ~ PSF scale
- Dynamics of the (atomic, molecular) gas at <1 au scale with spectro-astrometry --> ~0.02xPSF
- High-spectral resolution is critical for resolving low-, high-velocity components in line profiles





#### **Lecture outline**



- I. Description and specificities of the ELT and VLT(I)
  - > Observing techniques
  - > Performances
  - > Observational challenges
- > II. Complementary science with the ELT/VLT(I)
  - Structure of protoplanetary disks
  - Composition of planet forming material
  - > The inner regions of protoplanetary disks



#### The reservoir of carbonaceous grains



8-m class telescope at 10 µm deliver a characteristic size measurement



| Calibrator | Filter | $D_{ m d,L}$ ["]       | $D_{ m d,PSF}$ ["]     |
|------------|--------|------------------------|------------------------|
| HD 169414  | PAH-1  | $0.092 \pm 0.004$      | $0.103 \pm 0.003$      |
| HD 187642  | PAH-1  | $0.082 \pm 0.005$      | $0.101 \pm 0.003$      |
| HD 169414  | PAH-2  | $0.084 \pm 0.003$      | $0.096 \pm 0.002$      |
| HD 187642  | PAH-2  | $0.081 \pm 0.002$      | $0.087 \pm 0.002$      |
| HD 187642  | Si-6   | $\leq 0.024 \pm 0.009$ | $\leq 0.035 \pm 0.011$ |

CanariCam -- > 0.3" resolution

--> Minimum deconvolved diameter is ~0.03"

METIS --> 0.06" resolution

--> Minimum deconvolved diameter as small as ~0.006"

For partially resolved source, deconvolution techniques are implemented



#### The reservoir of carbonaceous grains

 Disk content in carbonaceous nanograins in inner region (Yoffe 2023; Kokoulina 2021; Devinat 2022)









#### The reservoir of carbonaceous grains

 Disk content in carbonaceous nanograins in inner region (Yoffe 2023; Kokoulina 2021; Devinat 2022)











#### The water snowline in disks



- Ice species as efficient site for chemical reactions (Tazaki+2021)
- Role of ices in favoring grain growth?
- Planetesimal formation at the snow line (Drazkowska+2017)  $\rightarrow$  location depends on sublimation temperature





#### The water snowline in disks



- Possible higher occurrence of Jupiter and sub-Jupiter planets close to the water-ice line
- F,G,K,M-type central star





## H<sub>2</sub>O snowline in continuum's spectral indices: principle









# H<sub>2</sub>O snowline in continuum's spectral indices: V883 Ori



• FU Ori-type outburst moves  $H_2O$  snow line outwards





#### The water snowline in disks



- 3.1 µm broadband feature observed in *absorption*
- · Search for differences in the IR colors of light scattered at the disk surface



[Terada 2007; Pontoppidan 2005]



#### Resolving the snow line at 3.1 $\mu m$



- H (1.65µm) to L' (3.8µm) beneficial for water ices detection in disks atmospheres
- Pioneered by Inoue+2008, Honda+2009 with CIAO/SUBARU in HD142527



[Honda 2009]



#### Resolving the snow line at 3.1 $\mu m$



- H (1.65µm) to L' (3.8µm) beneficial for water ices detection in disks atmospheres
- Observed in HD142527, HD100546, AB Aur



[Betti+2022, AB Aur]





#### **ELT Simulations**







#### **ELT Simulations**



• Canonical T Tauri and Herbig AeBe models (based on Kamp 2018)



[Kaufhold 2024]



#### **ELT Simulations**



- Water snow line set at 25 AU
- Simple test with after convolution with the ELT point spread function



[Kaufhold 2024]



## Applicability with the ELT





• Unique complementarity with NIRCAM IFU for H<sub>2</sub>O ices



#### **Lecture outline**



- I. Description and specificities of the ELT and VLT(I)
  - > Observing techniques
  - > Performances
  - > Observational challenges
- > II. Complementary science with the ELT/VLT(I)
  - Structure of protoplanetary disks
  - Composition of planet forming material
  - > The inner regions of protoplanetary disks



#### The inner 1 AU region









#### The GRAVITY YSO Survey





- Spatial structure of the inner ~1 au disk
  - ✓ Properties of the inner dust rim
  - ✓ Asymmetries and their temporal variability at short orbital timescales
  - ✓ Inner/outer disks misalignment
- Study of hot H and warm CO
  - ✓ Spatial location of line-emitting region, excitation mechanism (accretion, winds), kinematics
- Focuses on individual objects with peculiar properties



#### **Asymmetric Features in YSOs**







#### **Time variable structures in the inner disk**



Following disk dynamics at short orbital time scales (e.g., disk-induced variability)





$$T_{\rm orb} = 2\pi \sqrt{\frac{R^3}{GM_*}}$$

 $T_{\rm orb} \sim 0.5 \, {\rm yr}$ 

#### HD163296's portrait

#### Large scale sub-mm



[Isella 2018]

# Unresolved mid-IR emission HD 163296

[Petit dit de la Roche 2021]

Large scale IR scattered light



[Monnier 2018]

# Near-IR thermal emission







#### **Time variable structures in the inner disk**



• Signature in the closure phase signal



[Gravity Coll.: Ganci, Labadie+2024]



#### Orbital motion in the inner disk



#### 11-year PIONIER+GRAVITY campaign on the ~0.2 Myr Herbig Be star HD98922







#### Multi-ring inner disk in HD144432



• A multi-ring iron-rich disk in HD144432 revealed by PIONIER, GRAVITY and MATISSE



<sup>[</sup>Varga, MATISSE/GRAVITY coll. +2024]



#### **Multi-instrument campaigns**



• Disks properties in the DF Tau close binary system with JWST/MIRI, ALMA, GRAVITY and IRTF-iSHELL





#### **Multi-instrument campaigns**



• Disks properties in the DF Tau close binary system with JWST/MIRI, ALMA, GRAVITY and IRTF-iSHELL





### **Final word**





Disks identification and classification



#### **Towards km-baselines**





[Lacour+2024]