Basics of protoplanetary disc structure and dynamics

Geoffroy Lesur

geoffroy.lesur@univ-grenoble-alpes.fr

Your participation is needed

Each kouign amann hidden in the slides is an opportunity to get one of these speciality from Brittany for free if you answer (correctly!) the question

Basic disc structure

- **•** Disc equilibrium
	- Radial equilibrium
	- Vertical equilibrium
- **Disc secular dynamics**
	- Mass and angular momentum conservation
	- The alpha disc prescription
	- Some alpha disc solutions

Global disc equilibrium

by components:

$$
0 = -\frac{1}{\rho}\partial_R P + g_R + R\Omega^2
$$

$$
0 = -\frac{1}{\rho}\partial_z P + g_z
$$

Open question: should Ω depend on R? on z?

Constrains on the rotation profile

The gravitational field derives from a potential $\vec{g}=-\,\nabla\psi$

Unless under very specific circumstances (eg Barotropic flow), the rotation profile must depend on z

This « vertical shear » is driven by the thermal+density disc structure

 \bullet It is too often forgotten...

Vertical disc equilibrium

in the limit
$$
z \ll R
$$
: $\rho = \rho_{\text{mid}}(R) \exp(-z^2/(2H^2))$

Radial equilibrium

$$
0 = -\frac{1}{\rho}\partial_R(\rho c_s^2) + g_R + R\Omega^2
$$

- 1 equation, 3 unknowns : $\rho_{mid}(R)$, $\Omega(R, z)$, $c_s^2(R) \propto T(R)$,
	- $\rho_\mathrm{mid}(R)$ will be constrained by the disc temporal evolution
	- $T(R)$ will be constrained by radiative equilibrium
- For now, **we assume** a density and temperature profile:

$$
\rho_{\rm mid}(R) = \rho_0 \left(\frac{R}{R_0}\right)^p \qquad T(R) = T_0 \left(\frac{R}{R_0}\right)^q
$$

Putting it all together

assuming
$$
\rho_{\text{mid}}(R) = \rho_0 \left(\frac{R}{R_0}\right)^p
$$
 $T(R) = T_0 \left(\frac{R}{R_0}\right)^q$

vertical equilibrium:
\n
$$
\rho(R, z) = \rho_0 \left(\frac{R}{R_0}\right)^p \exp\left[\frac{R^2}{H^2} \left(\frac{1}{\sqrt{R^2 + z^2}} - \frac{1}{R}\right)\right]
$$
\n
$$
\sim \exp\left(-\frac{z^2}{2H^2}\right)
$$

Radial equilibrium:

\n
$$
\Omega(R, z) = \Omega_K \left[1 + (p + q) \left(\frac{H}{R} \right)^2 + q \left(1 - \frac{R}{\sqrt{R^2 + z^2}} \right) \right]
$$
\n
$$
\Omega_K \equiv \sqrt{\frac{GM_{\star}}{R^3}}
$$
\nand

\nand

\nwe have

\n
$$
\Omega_K = \sqrt{\frac{GM_{\star}}{R^3}}
$$
\nand

\n
$$
\Omega_K = \sqrt{\frac{GM_{\star}}{R
$$

8

Disc structure example

Figure 1. Basic state for the locally isothermal disc with $q = -1$, $p = -1.5$ and $c_0 = 0.05$. The left-hand panel shows a contour plot of Ω on the (*R*, *z*) plane. The middle panel is a similar contour plot, but this shows the magnitude of the vertical shear $\partial_z(R\Omega)$, which has a maximum at $|z| \sim 1$ (whereas the scaleheight at the inner radial boundary is 0.05). The right-hand panel shows the density ρ .

Disque secular dynamics

Disc Dynamics Mass conservation

$$
\frac{\partial \rho}{\partial t} + \bm{\nabla} \cdot \rho \bm{u} = 0
$$

Introduce the average: $\overline{Q} =$ \mathbb{Z}^2 $d\phi$ $\int_0^z = +h$ *z*=*h* $dz Q$ and $\Sigma = \overline{\rho}$

$$
\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} R \overline{\rho v_r} + \left[\rho v_z \right]_{z=-h}^{+h} = 0
$$

Disc Dynamics Angular momentum conservation

$$
\frac{\partial(\rho R u_{\phi})}{\partial t} + \overrightarrow{\nabla} \cdot \left[\rho R u_{\phi} \overrightarrow{u} + R P \overrightarrow{e}_{\phi} \right] = 0
$$

Introduce $\vec{u} = \Omega_K \vec{e}_{\phi} + \vec{v}$: ⃗

$$
\Omega_K R^2 \frac{\partial \rho}{\partial t} + \frac{\partial (\rho R v_{\phi})}{\partial t} + \overrightarrow{\nabla} \cdot \left[\rho R^2 \Omega_K \overrightarrow{v} + \rho R v_{\phi} \overrightarrow{v} + R P \overrightarrow{e}_{\phi} \right] = 0
$$

Average and integrate vertically:

$$
\Omega_K R^2 \frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} R \left(R^2 \Omega_K \overline{\rho v_r} + R \overline{\rho v_\phi v_r} \right) + \left[R^2 \Omega_K \rho v_z + R \rho v_\phi v_z \right]_{z = \pm h} = 0
$$

Cancel with mass conservation

Angular momentum conservation (once mass conservation is taken into account)

$$
\frac{\partial}{\partial V_r} \frac{\partial}{\partial R} \Omega_K R^2 + \frac{1}{R} \frac{\partial}{\partial R} R^2 \left[\overline{\rho v_{\phi} v_r} \right] + R \left[\rho v_{\phi} v_z \right]_{z = \pm h} = 0
$$

accretion radial stress vertical stress (aka wind stress)

Disc Dynamics *α* disc model

[Shakura & Sunyaev 1973, Lynden-Bell & Pringle 1974]

$$
\overline{\rho v_r} \frac{\partial}{\partial R} \Omega_K R^2 + \frac{1}{R} \frac{\partial}{\partial R} R^2 \left[\overline{\rho v_{\phi} v_r} \right] + R \left[\overline{\rho v_{\phi} v_z} \right]_{z=\pm h} = 0
$$

= $\alpha \overline{P}$

The « α disk » model is a closure for a turbulent disk

$$
\overline{\rho \delta v^2} = \alpha \overline{P} = \alpha c_s^2 \overline{\rho}
$$
 so that $\delta v \simeq \sqrt{\alpha c_s}$

The « α disk » model is equivalent to an « effective » viscosity:

$$
a_{\text{alpha stress:}} \alpha \overline{P} = \alpha c_s^2 \overline{\rho} = \alpha c_s H \Omega_K \overline{\rho}
$$

\n
$$
v_{\text{iscous stress:}} - \nu R \frac{d \Omega_K}{dR} \overline{\rho} = \frac{3}{2} \nu \Omega_K \overline{\rho}
$$

\n
$$
v_{\text{eff}} = \frac{2}{3} \alpha c_s H
$$

Disc Dynamics *α* disc model (cont'd)

$$
\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} R \overline{\rho v_R} = 0
$$
\n
$$
\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} R^2 \alpha c_s^2 \Sigma = 0
$$
\n
$$
\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} \frac{2}{\Omega_K R} \frac{\partial}{\partial R} R^2 \alpha c_s^2 \Sigma = 0
$$

Effectively a diffusion equation for the surface density

$$
\partial_r \Sigma \simeq -\kappa \partial_R^2 \Sigma
$$
 with diffusion coefficient $\kappa = \alpha c_s^2 / \Omega_K$

Gives a typical timescale for the disk dissipation $\tau = R^2/\kappa = R^2\Omega_K/\alpha c_s^2$

9 with T=10K (cs=100 m/s), R=100 AU around a solar mass star:
$$
\tau = 40\,000/a
$$
 years

Assuming a typical survival timescale ~ a few million years $\alpha \simeq 10^{-2}$

Viscous solutions

 σ

radius is 10^{-2} in these units, while the upper modification corresponds to the solution in which a no-central-flux boundary condition is imposed, corresponding to the throwing off of the disc by a strong magnetosphere.

Viscous solution are characterised by accretion AND expansion

why?

Dynamics of gaseous disc

- **Gravitational instability**
- **•** Vertical shear instability
- Magnetorotational instability

Gravitational instability in a nutshell

- Blob mass $M = \pi \lambda^2 \Sigma$
- Free fall time of the blob *t ff* [≃] (*λ*3 *GM*) 1/2 ⁼ (*λ πG*Σ) 1/2
- Sound crossing time $t_{\text{sound}} = \lambda / c_s$
- Orbital time $t_{\text{orbit}} = \Omega_K^{-1}$

The blob will collapse if $t_{ff} < t_{\rm sound}$ and $t_{ff} < t_{\rm orbit}$

Gravitational instability in a nutshell

Critical length scale when $t_{\rm sound} = t_{\rm orbit}$: $\lambda_c = c_s/\Omega_K$

Unstable if $t_{ff}(\lambda_c) < t_{\text{orbit}}$ $c_s\Omega_K$ *πG*Σ « Toomre criterion » [A. Toomre, 1964] « Q » parameter

t ff ⁼ (

 $t_{\text{sound}} = \lambda / c_s$

λ

*πG*Σ)

1/2

Gravitational instability and disk mass

● Relate the surface density to the disk mass: $\Sigma \sim M_\mathrm{disk}/\pi R_\mathrm{disk}^2$

● Express the sound speed with the disk thickness $c_s = \Omega_K H$

● Use the Keplerian velocity definition $\Omega_K^2 = GM_\star/R_\mathrm{disk}^{-3}$

$$
Q = \frac{c_s \Omega_K}{\pi G \Sigma} \sim \frac{H M_{\text{disk}}}{R M_{\star}}
$$

Gravitationally-unstable disks are therefore very massive (typically

 $M_{\rm disk} \gtrsim 0.1 M_{\star}$

Gravitational instabilities Nonlinear evolution

Gravitational instabilities **Cooling**

[Gammie 2001]

The outcome depends on the cooling timescale. If the cooling is sufficiently fast, the disc heating can't adjust, and the disk forms « clumps »

Occurence map

The structure of a steady-state of a 1 state and a 1 mondom and 1 mondom a 1 mondom a 1 mondom and 1 mondom a 1 mondom a 1 mondom and that self-gravitation and a 1 mondom a 1 mondom a 1 mondom and that self-gravite and th \Box aposto oon gramating groot for the ool the requirement are strongly accreting (i.e. you disks) Expects self-gravitating discs for R>30 AU that

Gravitational instability in the literature

AB Aur

Dynamics of gaseous disc

- **Gravitational instability**
- **•** Vertical shear instability
- Magnetorotational instability

Vertical shear A powerful source of instability

- Consider a spherical blob that we displace « almost » vertically
- The blob must conserve its specific angular momentum $\mathscr{L}=R^2\Omega$
- It ends up in a region of lower $\mathscr L \to$ it rotates faster than the surrounding disk \to it moves further out

VSI The curse of the cooling timescale

As the particle moves up, it inflates (lower pressures!) and cools down (adiabatic expansion)

- Since the disc is vertically isothermal, the blob is cooler than the background, so it is denser
- If we don't heat up the blob *rapidly*, it comes back down because of vertical buoyancy/gravity

VSI requires a α fast » cooling/heating of the disc

VSI in practice **VSI** in practice Δ density slope parameter, disc aspect ratio and time averaged stress to pressure value. The vertical and azimuthalas domain sizes for all simulations are θ = ±3.5*H* and φ = 0 − 2π, respectively.

Λ paular monomium tropoport Angular monentum transport political proportion of the 1.5 original proportion of 1.5 α and 1.5 momentum Flow topology **6.8–1.2 256 ×340** Angular momentum transport

In a first set of simulations we show that the instability of simulations were shown that the instability of t
In the instability of the instabili

Fig. 19. Velocity in the meridional direction, u_{θ} , in units of local *Kepler* velocity for an irradiated run without viscosity at resolution 1024×256 ⟨*P*⟩ **1**, $\mathbf{1}$, $\mathbf{1$

the VSI is characterised by strong up, nearly isothermal, and instability. The instability of instability of instability. The instability of instability of instability of instability of instability of instability. The instability of instability of instability o In Fig. 19 imited radial angular moment closely the local local case except that the small scale that the small scale scale that the small scale scale α motions α corrustion waves α σ equilibrium statementum that the discrete orientation of σ atum tropoport $(\alpha > 10^{-3})$ \mathfrak{u} and isothermal simulations we find that $\mathfrak{u}\leqslant 10$:haracter The VSI is characterised by strong up/down motions (« corrugation waves ») rapid growth of the α value in the first few tens of orbits of the imited radial andular momenti Limited radial angular momentum transport ($\alpha < 10^{-3}$) $\sum_{\alpha=1}^{\infty}$

Model *^r*in, out/*R*⁰ Grid size (*N*^r [×] *^N*^θ [×] *^N*ϕ) *p h* ⟨α⟩/10−⁴ &[2π/']

VSI in the literature

M. Barraza-Alfaro et al.: Observability of the vertical shear instability in protoplanetary disk CO kinematics

Fig. 4. Results of the line of sight velocity map and extracted velocity perturbations from a VSI unstable disk ${}^{12}CO(2-1)$ synthetic lines observations. The velocity centroid of the line was computed at each pixel from mock data cubes with a velocity resolution of 0.05 km s1. The input fields are

 $SMADorr070.$ Minimum in From top and top to both continuous for disk inclination. $SORDST0.$ *First column*: velocity centroid maps (v0). The images are convolved by a circular Gaussian beam of 50 mas and have no noise. *Second column*: [M. Barraza-Alfaro et al. 2021]residual map of subtracting to v⁰ the velocity centroid map obtained from a disk following an equilibrium solution (veq). *Third column*: residual of

Dynamics of gaseous disc

- **Gravitational instability**
- **•** Vertical shear instability
- Magnetorotational instability

Origin of turbulence in discs The Magnetorotational instability (MRI)

[Balbus, & Hawley (1991)] [Balbus (2003)]

31

Magnetic tension between A and B transfers angular momentum between the particles and lead to a runaway

MRI-turbulent disc threaded by a large-scale B

 $1.0e-06$

MRI-driven angular momentum transport where *Txy* = *Txy*, Rey + *Txy*, Max is the *xy* (i.e. *r*φ) component of \blacksquare parameter is relatively small for the ZNVF, but increases dramatically with increasing net vertical magnetic flux, even exceeding unity for simulations $V_{\rm F}$ is an $N_{\rm F}$ $\begin{array}{ccc} \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & \textbf{5} & \textbf{5} & \textbf{6} & \textbf{7} & \textbf{8} & \textbf{8} & \textbf{9} & \textbf{10} &$

^y (18)

 $\alpha_{\rm MRI} \gtrsim 10^{-2}$ and can be $\mathcal{O}(1)$ for sufficiently strong fields ϵ iscosity becomes essentially independent of ϵ $\overline{}^{\alpha}$ *NIK* \mathbf{r} and call be $\mathcal{O}(1)$ for sumplem

MRI: conditions of existence

1.The magnetic field must be « sufficiently » weak: $t_{\text{Alfven}} > t_{\text{orbit}} \rightarrow V_A/H < \Omega_K$

in practice for a « standard disk »: $B < 12 R_{\rm AU}^{-11/8}\,{\rm G}$ [Lesur 2021]

2.The coupling between the field and the gas must be sufficiently strong $t_{\text{Alfven}} < t_{\text{diffusion}} \rightarrow V_A/H > \eta/H^2$

In practice, there are three « kinds » of magnetic diffusivities, so this becomes a bit more complicated…

Ionisation sources in protoplanetary discs

- « non ideal » MHD effects
	- Ohmic diffusion (electron-neutral collisions)
	- Ambipolar Diffusion (ion-neutral collisions)
	- Hall Effect (electron-ion drift)

Amplitude of these effects depends strongly on location & composition

36

Summary

this is very schematic

The presence of VSI depends on the disc opacity (grain size and vertical distribution)? GI behaviour depends on disc mass and opacity It neglects winds (see Wednesday)