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to get one of these speciality from Brittany for free if you answer 
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Global disc equilibrium

4

gR

gz

RΩ2

−∂zP
−∂RP

0 = − ⃗∇ P + ρ ⃗g + ρRΩ2 ⃗eR

by components:

0 = −
1
ρ

∂RP + gR + RΩ2

0 = −
1
ρ

∂zP + gz

Open question: should  depend on R? on z?Ω



Constrains on the rotation profile

Unless under very specific circumstances (eg Barotropic flow), the 
rotation profile must depend on z 

This « vertical shear » is driven by the thermal+density disc structure 

It is too often forgotten… 5

The gravitational field derives from a potential ⃗g = − ∇ψ

0 = −
1
ρ

∂RP − ∂Rψ + RΩ2

0 = −
1
ρ

∂zP − ∂zψ

∂z

∂R

-

1
ρ2

(∂zρ∂RP − ∂Rρ∂zP) + R∂zΩ2 = 0

« Thermal wind equation »



Vertical disc equilibrium
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gR

gz

RΩ2

−∂zP
−∂RP

0 = −
1
ρ

∂zP + gz
−

GM⋆z
(R2 + z2)3/2

Define the isothermal sound speed  
Assume the disc is locally-isothermal, i.e  and 

c2
s ≡ P/ρ ∝ T

T = T(R) ∂zT = ∂zc2
s = 0

∂zρ
ρ

= −
GM⋆z

c2
s (R2 + z2)3/2 ρ = ρmid(R)exp[ R2

H2 ( R
(R2 + z2)1/2

− 1)]
H2 ≡ c2

s R3/GM*

in the limit :     z ≪ R ρ = ρmid(R)exp( − z2/(2H2))



Radial equilibrium

1 equation, 3 unknowns : ,  

 will be constrained by the disc temporal evolution 

 will be constrained by radiative equilibrium 

For now, we assume a density and temperature profile: 

           

ρmid(R), Ω(R, z), c2
s (R) ∝ T(R)

ρmid(R)

T(R)

ρmid(R) = ρ0 ( R
R0 )

p

T(R) = T0 ( R
R0 )

q
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0 = −
1
ρ

∂R(ρc2
s ) + gR + RΩ2



Putting it all together
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           ρmid(R) = ρ0 ( R
R0 )

p

T(R) = T0 ( R
R0 )

q

assuming

ρ(R, z) = ρ0 ( R
R0 )

p

exp [ R2

H2 ( 1

R2 + z2
−

1
R )]

vertical equilibrium:

∼ exp (−
z2

2H2 )
Radial equilibrium:

Ω(R, z) = ΩK [1 + (p + q)( H
R )

2

+ q (1 −
R

R2 + z2 )]
ΩK ≡

GM⋆

R3 « radial pressure 
support » « vertical shear »

[Nelson+ 2013]



Disc structure example
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22 A. J. Barker and H. N. Latter

Figure 1. Basic state for the locally isothermal disc with q = −1, p = −1.5 and c0 = 0.05. The left-hand panel shows a contour plot of ! on the (R, z) plane.
The middle panel is a similar contour plot, but this shows the magnitude of the vertical shear ∂z(R!), which has a maximum at |z| ∼ 1 (whereas the scaleheight
at the inner radial boundary is 0.05). The right-hand panel shows the density ρ.

particularly important issue when trying to connect the linear theory
to global simulations, and in interpreting their non-linear outcome.
Our paper is devoted to exploring this aspect of the problem.

We perform linear stability analyses of astrophysical discs ex-
hibiting global variations in temperature and entropy, and as a con-
sequence vertical shear. We employ locally isothermal and poly-
tropic models in both quasi-global and fully global 2D geometries,
which revise and extend previous work.

In agreement with Nelson et al. (2013), we find that the VSI
excites two classes of modes. The first class corresponds to classical
free inertial waves (r modes) that are present in any astrophysical
disc (Lubow & Pringle 1993; Korycansky & Pringle 1995; Kato
2001) but which have been destabilized by the vertical shear. These,
referred to as ‘body modes’, grow at modest rates and typically
exhibit longer wavelengths (though the radial wavelength of the
waves is still short).

The second class corresponds to modes localized to the verti-
cal surfaces of the disc where the vertical shear is maximal. These
grow much faster and have very short wavelengths, making them
difficult to resolve numerically. In fact, unless viscosity is included,
the fastest growing modes possess arbitrarily small wavelengths,
making their simulation problematic. Note that, though they have
been termed ‘surface modes’, these are different to the classical
surface gravity waves that appear in polytropic disc models, as they
lie in a different frequency range; they are hence a form of local-
ized low-frequency inertial wave. Strict isothermal models do not
possess a physical vertical surface and hence do not support these
surface modes. Polytropic disc models do, however, as should any
realistic disc model that possesses a transition between an optically
thick interior and an optically thin ‘corona’.

We begin by explaining why a radial variation in entropy or
temperature generally leads to vertical shear in Section 2. There we
also explain why such discs are likely to be unstable. After defining
our basic disc models in Section 3, we analyse the resulting VSI
in the locally isothermal disc in Sections 4 and 6 and the locally
polytropic disc in Section 5. Finally, we will discuss the implications
of our results in Section 7, where we also speculate on the non-
linear evolution of the VSI and its efficiency at transporting angular
momentum.

2 V ERTICAL-SHEAR INSTABILITY

Discs with radial variations in temperature or entropy necessarily
possess vertical shear. To see that this must be, consider the ‘thermal

wind equation’ (the azimuthal component of the vorticity equation
for the axisymmetric basic state of the disc):

∂z(R!2) = −eφ · (∇ρ × ∇P ) /ρ2 (1)

= ∂RT ∂zS − ∂zT ∂RS. (2)

Here we have adopted cylindrical polar coordinates centred on the
central object (R, φ, z) and ρ, P, S and T are the basic state density,
pressure, specific entropy and temperature profiles, respectively.
Equation (1) tells us that a radial variation in the background tem-
perature or entropy generates a departure from cylindrical rotation
through the baroclinic terms on the right-hand side. Thus the an-
gular velocity ! = !(R, z), and consequently the disc exhibits a
weak vertical shear. For illustration, we show the angular velocity
and vertical shear for a disc with a radial variation in temperature
in Fig. 1, and the vertical shear for a disc with a radial variation in
entropy in Fig. 2 (both disc models and the notation adopted are
defined in Section 3).

2.1 Physical picture

Vertical shear provides a source of free energy that can drive hydro-
dynamic instabilities. How might modes access this free energy?
Consider a ring of fluid at a given location (A) within the disc
with coordinates (RA, zA), and hence specific angular momentum
hA = R2

A!(RA, zA). If we vertically displace this ring to a new po-
sition (B) with coordinates (RA, zA + $z), then its specific angular
momentum will be conserved as long as viscosity can be neglected
(i.e. we assume that |$z| is much larger than the viscous length).
But if the angular momentum of fluid at the new location hB is
smaller (larger) than hA, then the ring will be pushed outwards
(inwards) by the centrifugal acceleration (h2

A − h2
B)/R3

A, leading to
a dynamical instability. Given that h2

B ≈ h2
A + $z∂zh

2, instability
occurs whenever ∂zh

2 < 0 (or indeed >0), i.e. if there is any vertical
shear. Basically, this interchange of rings of fluid reduces the total
energy of the configuration, leading to an instability that transports
angular momentum in order to eliminate the vertical shear.1 This

1 Our illustrative perturbation is vertical for simplicity; any displacement
lying within the angle between the rotation axis and a surface of constant
angular momentum will do (as explained in Knobloch & Spruit 1982, for
example).

MNRAS 450, 21–37 (2015)
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Disque secular dynamics
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Disc Dynamics 
Mass conservation

Introduce the average:

11

@⇢

@t
+r · ⇢u = 0

Q =

Z
d�

Z z=+h

z=�h
dz Q ⌃ = ⇢

@⌃

@t
+

1

R

@

@R
R⇢vr +

h
⇢vz

i+h

z=�h
= 0

and



Disc Dynamics 
Angular momentum conservation

Introduce : 

 

Average and integrate vertically:

⃗u = ΩK ⃗eϕ + ⃗v

ΩKR2 ∂ρ
∂t

+
∂(ρRvϕ)

∂t
+ ⃗∇ ⋅ [ρR2ΩK ⃗v + ρRvϕ ⃗v + RP ⃗eϕ] = 0

12

∂(ρRuϕ)
∂t

+ ⃗∇ ⋅ [ρRuϕ ⃗u + RP ⃗eϕ] = 0

Cancel with mass conservation

ΩKR2 ∂Σ
∂t

+
1
R

∂
∂R

R (R2ΩK ρvr + Rρvϕvr) + [R2ΩK ρvz + Rρvϕvz]z=±h
= 0



Disc Dynamics 
Angular momentum conservation

Angular momentum conservation (once 
mass conservation is taken into account)
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accretion radial stress vertical stress 
(aka wind stress)

ρvr
∂

∂R
ΩKR2 +

1
R

∂
∂R

R2[ρvϕvr] + R [ρvϕvz]z=±h
= 0



Disc Dynamics 
 disc modelα

The «   disk » model is a closure for a turbulent disk 
 

 so that   

The «   disk » model is equivalent to an « effective » viscosity: 

alpha stress:  

viscous stress: 

α

ρδv2 = αP = αc2
s ρ δv ≃ αcs

α

αP = αc2
s ρ = αcsHΩKρ

−νR
dΩK

dR
ρ =

3
2

νΩKρ
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[Shakura & Sunyaev 1973, 
Lynden-Bell & Pringle 1974]

ρvr
∂

∂R
ΩKR2 +

1
R

∂
∂R

R2[ρvϕvr] + R [ρvϕvz]z=±h
= 0

= αP

νeff =
2
3

αcsH



Disc Dynamics 
 disc model (cont’d)α

Effectively a diffusion equation for the surface density 
 

 with diffusion coefficient  

Gives a typical timescale for the disk dissipation  

with T=10K (cs=100 m/s), R=100 AU around a solar mass star: 
 

Assuming a typical survival timescale ~ a few million years 

∂rΣ ≃ − κ∂2
RΣ κ = αc2

s /ΩK

τ = R2/κ = R2ΩK /αc2
s

τ = 40 000/α years

α ≃ 10−2

15

[Shakura & Sunyaev 1973, 
Lynden-Bell & Pringle 1974]

∂Σ
∂t

+
1
R

∂
∂R

RρvR = 0

ρvr
∂

∂R
ΩKR2 +

1
R

∂
∂R

R2αc2
s Σ = 0

∂Σ
∂t

+
1
R

∂
∂R

2
ΩKR

∂
∂R

R2αc2
s Σ = 0



Viscous solutions
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[Lynden-Bell & Pringle 1974]

Secular evolution of MHD wind-driven discs 2297 

MNRAS 512, 2290–2309 (2022) 

Figure 6. Examples of the evolution of the surface density for the analytical solutions presented in this work. The first three left-hand panels are for constant α
solutions (see Section 3.3 ) in the case of viscous ( ψ = 0), hybrid ( ψ = 1), and pure wind-driven ( ψ = ∞ ) accretion. The rightmost panel is for a # c -dependent 
wind torque solution (see Section 3.4 ) with ω = 0.25. At initial time, the discs share the same initial characteristic radius of r c (0) = 50 au and disc mass 
of M D = 10 −2 M ⊙. The time evolution of the surface density is controlled by the initial accretion time-scale t acc, 0 (see definition in equation 29 ). Each line 
corresponds to a different age ranging from t = 0 to 8 t acc, 0 with steps of 2 t acc, 0 (from dark blue to green). In the # c -dependent wind torque solution (rightmost 
panel), the disc is dispersed at t = 8 t acc, 0 . The characteristic radius r c ( t ), outlined by dots, is constant in the pure wind cases, whereas it increases in the viscous 
cases. The power-law index in the inner tens of au is flatter in the wind cases due to the mass-loss accompanying the accretion flow (see equation 15 ). 

Figure 7. Time evolution of the disc mass for the hybrid solutions, depending 
on the relative contribution of the vertical to the radial torque quantified by 
ψ . In all cases λ = 3 so that ξ varies between 0 and 0.25. The value of the 
viscous accretion time-scale t ν, 0 = (1 + ψ) t acc, 0 is indicated with a circle 
along each curve. 
3.3.3 Disc mass 
The evolution of the disc mass depends also critically on the driving 
accretion process. The evolution of the disc mass obtained from 
equation ( 28 ) and ( 35 ) is 
M D ( t) = M 0 (1 + t 

(1 + ψ) t acc , 0 
)− 1 

2 ( ψ+ 2 ξ+ 1) 
, (37) 

and shown in Fig. 7 . In the viscous case ( ψ = 0), the disc mass 
decreases slowly with time with the classical scaling M D ( t) ∝ 1 / √ 

t 
for t ≫ t ν, 0 . This is ultimately due to the viscous spreading of the 
disc. As the gas in the bulk part of the disc is advected at constant 
velocity, the instantaneous viscous time-scale (i.e. the time required 
to advect the gas located at r c ( t )/2 to the inner disc) increases as 
t ν, 0 ( t ) ∝ t due to the increase in r c ( t ). This prevents the disc from 
rapidly draining all its material onto the star. 

In the fiducial wind-driven case, the disc mass drops by more than 
two orders of magnitudes after t = 10 t acc, 0 (see Fig. 7 ). Quantitatively, 
a Taylor expansion of equation ( 37 ) in the case ψ → +∞ shows that 

the evolution of the disc mass follows an exponential decay with 
M D ( t) = M 0 e − t 

2 t acc , 0 . (38) 
This behaviour, which contrasts with the viscous case, is due to the 
absence of disc spreading. Since the outer radius remains constant, 
the bulk part of the disc located initially within r ! r c (0) is drained 
after t ≃ 2 t acc, 0 . The evolution of the disc mass does not depend 
on the fraction of mass lost in the wind quantified by f M . Therefore 
neither the value of λ nor r c / r in impacts the evolution of the disc mass 
(see equation ( 31 )). 

In the hybrid case (see Fig. 7 ), the evolution of the disc mass is 
bracketed between that of the exponentially decaying pure wind case 
( ψ = ∞ ) and that of the slowly evolving pure viscous case ( ψ = 0), 
and appears to be sensitive to the value of ψ . For t ≫ t ν, 0 = (1 + 
ψ) t acc, 0 , the disc mass exhibits a power-law dependence on time 
M D ( t) ≃ M 0 ( t 

t ν, 0 
)− 1 

2 ( ψ+ 2 ξ+ 1) 
(39) 

as in the viscous case, but with a power-law index that is increased by 
1 
2 ( ψ + 2 ξ ). This is a typical hybrid behaviour: the viscous spreading 
prevents the rapid draining of the disc, but the wind accretion ensures 
a steeper decrease in the disc mass with time due to its ability to 
sustain high accretion rate. 

Interestingly, in the more general case for which c 2 S ̃  α ∝ r γ−3 / 2 , the 
disc mass scales as (1 + t / t ν, 0 ) −(1 + 2 ξ + ψ)/(2(2 − γ )) (see Appendix C ). 
Therefore, there is a de generac y in the slope of the disc mass, between 
γ and ψ . For example, a pure viscous case with a radial gradient of 
αSS ∝ r −1 + γ and a hybrid case with constant α-parameters have the 
same slope for 
ψ = γ − 1 

2 − γ
, (40) 

where we assumed ξ ≪ 1 and a same power-law index of the 
temperature. 
3.3.4 Accretion rate 
In the presence of a wind, the accretion rate is the time deri v ati ve of 
the disc mass reduced by the fraction mass that is ef fecti vely accreted 
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Viscous solution are characterised by accretion AND expansion 
why? 



Dynamics of gaseous disc

Gravitational instability 

Vertical shear instability 

Magnetorotational instability
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Gravitational instability in a nutshell
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λ

Blob mass  

Free fall time of the blob 

  

Sound crossing time 
 

Orbital time 
 

The blob will collapse if 
 and 

M = πλ2Σ

tff ≃ ( λ3

GM )
1/2

= ( λ
πGΣ )

1/2

tsound = λ /cs

torbit = Ω−1
K

tff < tsound tff < torbit

Question: when does the 
red blob orbiting at 
collapse under its own 

gravity?

ΩK

Surface density 
Σ

ΩK



Gravitational instability in a nutshell

Critical length scale when :  

Unstable if  

tsound = torbit λc = cs/ΩK

tff(λc) < torbit
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tff = ( λ
πGΣ )

1/2

tsound = λ /cs
torbit = Ω−1

K

timescale

λ

tsound

torbit

tff

Always stable unstable
timescale

λ

tsound

torbit

tff

λcλmin λmax

unstable

csΩK

πGΣ
< 1 « Toomre criterion » 

[A. Toomre, 1964]

« Q » parameter



Gravitational instability and disk mass

Relate the surface density to the disk mass: 
 

Express the sound speed with the disk thickness 
 

Use the Keplerian velocity definition 
 

Σ ∼ Mdisk /πR2
disk

cs = ΩKH

Ω2
K = GM⋆/Rdisk

3

20

Q =
csΩK

πGΣ
∼

H
R

Mdisk

M⋆

Gravitationally-unstable disks are therefore very massive (typically 
)Mdisk ≳ 0.1M⋆



Gravitational instabilities 
Nonlinear evolution

Consider a disc with Q>1 

Disc cools, cs decreases 

When Q=1 GI starts 

GI unstable modes produce strong 
shocks           heating 

cs increases 

Q>1 GI stops

21

636 G. Lodato and W. K. M. Rice

Figure 3. Profiles of the Q parameter for the three simulations: (upper left) q = 0.05; (upper right) q = 0.1; (bottom) q = 0.25.

effects of heating from gravitational instabilities and cooling. Our
simulations are similar to those performed by Rice et al. (2003a,b),
with the difference that these previous investigations were concerned
about either the motion of the central object caused by the massive
disc, or the issue of fragmentation of the disc, while here the main
goal is to characterize the transport properties induced by gravita-
tional instabilities.

We believe that both performing 3D simulations and solving ex-
plicitly the energy equation are essential to determine the final out-
come of the instabilities. In fact, the dynamical properties of self-
gravitating discs are determined to a large extent by the process of
self-regulation, which is strongly dependent on the detailed heating
and cooling mechanisms, as outlined in the introduction. Further-
more, because one of the main tests we want to perform is to check
the type of dissipative process associated with gravitational insta-
bilities, solving the energy equation is essential. The requirement
of 3D simulation is also fundamental, because the typical size of
gravitational disturbances is related to the disc thickness, so that
any zero-thickness simulation will automatically lead to an under-
estimate of global effects.

Previous numerical work carried out on the subject includes:
global, 3D SPH simulations of massive isothermal discs (Laughlin
& Bodenheimer 1994); global, 2D SPH simulations with detailed
heating and cooling (Nelson et al. 2000); global, 3D grid-based sim-
ulations with heating and cooling (Pickett et al. 2000); and local, 2D

grid-based simulations with heating and cooling (Gammie 2001). In
this section we describe the similarities and the differences between
our study and these previous studies.

One of the first studies of gravitational instabilities in discs was
performed by Laughlin & Bodenheimer (1994). They modelled a
very massive disc (with M disc ≈ M⋆) and followed its evolution with
a 3D SPH code, without including any heating or cooling term, but
simply assuming that the disc was locally isothermal. In this study,
the authors also tried to give a detailed characterization of the trans-
port. Their approach was however slightly different to ours, in that
they evolved their simulation long enough to capture the viscous
evolution of the disc, and then compared the evolution of the az-
imuthally averaged surface density with simple one-dimensional
viscous models, concluding that the disc evolution could be well
reproduced by a viscous model with α ≈ 0.03. This work is impor-
tant because it clarifies that gravitational instabilities are actually
able to transport angular momentum efficiently and that the surface
density evolution is indeed of a diffusive nature, as expected (see
Section 2), but does not answer the important question of whether
energy dissipation is local or global.

Nelson et al. (2000) performed 2D simulations with particular
emphasis on the cooling processes in the disc and included a more
realistic cooling function than the simple parametrization adopted
here. Their disc mass was M disc = 0.2M⋆, very similar to our
most massive case. They estimated the effective α associated with

C⃝ 2004 RAS, MNRAS 351, 630–642

Q

R

[Lodato & Rice 2004]

Q =
csΩK

πGΣ

[Daniel Price]



Gravitational instabilities 
Cooling

The outcome depends on the cooling timescale. If the cooling is sufficiently fast, the 
disc heating can’t adjust, and the disk forms « clumps » 

22

[Gammie 2001]

⌧cool = 10⌦�1 ⌧cool = 2⌦�1



Occurence map
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AA49CH06-Armitage ARI 5 August 2011 12:22
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Figure 3
The structure of a steady-state, self-gravitating disk around a 1 M⊙ star, calculated assuming that self-gravity
acts as a local angular momentum transport process whose efficiency is set by the requirement of thermal
equilibrium (Clarke 2009, Rafikov 2009). The opacity includes contributions from water ice, amorphous
carbon, silicates, and graphite (Z. Zhu, private communication). If self-gravity is the sole source of angular
momentum transport, the effective αgrav generated by the self-gravitating turbulence is an increasing
function of radius, and there is a maximum radius (shown as the purple area) beyond which fragmentation is
predicted to occur. The blue curves show radii where αgrav = 10−2 and 10−3. If other sources of angular
momentum transport coexist with self-gravity and generate stresses of this magnitude, these radii denote the
approximate inner edge of the self-gravitating disk. The green lines show where the effective temperature of
the luminous disk equals 10 K or 20 K; if an external irradiation field heated the disk, it would affect the
dynamics to the right of the green lines.

Rice, Mayo & Armitage 2010). There are, however, two caveats. First, the effective tempera-
ture of an isolated self-gravitating disk at the innermost fragmenting radius is quite low, typically
around 10–20 K (Matzner & Levin 2005). This implies that the dynamics of self-gravitating disks
in the potentially fragmenting region are sensitive to modest levels of external irradiation, which
will tend to weaken gravitational instabilities (Cai et al. 2008, Stamatellos & Whitworth 2008,
Vorobyov & Basu 2010). Second, the innermost fragmenting radius is calculated for a given opac-
ity and will vary with the metallicity of the disk and as a result of particle coagulation (Cai et al.
2006). For an opacity appropriate for ice grains, for example, κ = κ0T 2 (Semenov et al. 2003),
and #frag ∝ κ

−1/3
0 (Matzner & Levin 2005, Rafikov 2009). Reduced values of the opacity would

therefore push the fragmentation boundary interior to the fiducial radius of 50–102 AU.
Immediately interior to the radius where #K = #frag, the strength of self-gravitating transport

is close to the maximum value, α ≈ 0.1. At smaller radii, the disk becomes increasingly optically
thick, and the longer cooling time results in lower values of α (Equation 13). This means that the
surface density in self-gravitating disks at small radii is high and that even very weak transport by
other mechanisms will suffice to render the disk stable against self-gravity. Curves corresponding
to a self-gravitating α = 10−2 and 10−3 are shown in Figure 3, from which it is clear that it is
hard to sustain a strongly self-gravitating disk much interior to 10 AU. This implies that, although
shocks in a strongly self-gravitating disk are a candidate mechanism for chondrule formation (Boss
& Durisen 2005), it is hard to construct self-consistent models in which strong enough shocks
would be present at small radii (Boley & Durisen 2008).

www.annualreviews.org • Dynamics of Protoplanetary Disks 205
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Expects self-gravitating discs for R>30 AU that  
are strongly accreting (i.e. you disks)



Gravitational instability in the literature
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Figure 1: Global spirals in the AB Aur disk. (a) VLT/SPHERE H-band scattered light image of
the AB Aur disk (ref.35) tracing spiral structure in (sub-)micron-sized dust grains. The labelled spi-
rals S1-S7 are taken from previous works (ref.37, 38). (b) Filtered ALMA 13CO intensity-weighted
mean velocity (moment 1) map, revealing residual gas motion within the bulk flow. The synthe-
sised beam is shown in the bottom left corner as an ellipse. The inset zooms into the region around
where S5 crosses the minor axis, highlighting converging flows on the two sides of S5 indicated
by arrows. (c) Filtered ALMA 13CO integrated intensity (moment 0) map, highlighting peaks in
the gas density and/or temperature. (d) Filtered ALMA 13CO emission line width (moment 2)
map, showing localized line broadening within the spiral arms. Insets in panels (c,d) zoom into the
same region as panel (b) inset, showing enhanced gas density/temperature caused by the radially
converging flows around S5.

5

[Speedie et al., 2024, Nature]

AB Aur



Dynamics of gaseous disc

Gravitational instability 

Vertical shear instability 

Magnetorotational instability
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Vertical shear 
A powerful source of instability

26

Vertically isothermal discs experience a vertical shear

Consider a spherical blob that we displace « almost » vertically 

The blob must conserve its specific angular momentum  

It ends up in a region of lower   it rotates faster than the surrounding disk it moves further out

ℒ = R2Ω

ℒ → →

[Urpin & Brandenburg 1998 
Nelson et al. 2013] 



VSI 
The curse of the cooling timescale

As the particle moves up, it inflates (lower pressures!) and cools down (adiabatic expansion) 

Since the disc is vertically isothermal, the blob is cooler than the background, so it is denser 

If we don’t heat up the blob rapidly, it comes back down because of vertical buoyancy/gravity 

27VSI requires a « fast » cooling/heating of the disc



VSI in practice
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Moritz H. R. Stoll and Wilhelm Kley: Vertical shear instability in accretion disc models with radiation transport

Fig. 19. Velocity in the meridional direction, u✓, in units of local Kepler
velocity for an irradiated run without viscosity at resolution 1024⇥ 256
(top) and with resolution 2048 ⇥ 512 (bottom). Compare with Fig. 2
which has a spatial resolution of 2048 ⇥ 512.

the vertical optical depth (see Fig. 15), but this will keep the disc
nearly isothermal, again as required for instability.

In Fig. 19 we illustrate that the instability still resembles
closely the locally isothermal case except that the small scale
perturbations are missing, even in the optically thin region,
where we have very short cooling times. For comparison, Nelson
et al. (2013) found that the instability was completely suppressed
with relaxation times of trelax = 0.1, which is the timescale for
the flow to relax to the initial isothermal profile. We take this as
an indication that physically, radiative di↵usion plus irradiation
behaves in a di↵erent way from a simple model of temperature
relaxation as used in Nelson et al. (2013).

As seen in Fig. 15 an increase in the density leads to higher
optical depths and longer di↵usion times, and consequently to a
weaker instability. While doubling the density in a simulation
with resolution 2048 ⇥ 512 has no clear influence on the ki-
netic energy and the cooling times in the optical thin regions,
the Reynolds stress was clearly weaker by a factor of around 1.5
in the simulation with doubled density (the model in the middle
of Fig. 18). In addition the wavelength of the perturbations is
decreased.

A further increase in the density leads also to a strong de-
crease in the kinetic energy, with again a smaller wavelength.
This raises the question whether the simulation with resolution
of 2048⇥ 512 is su�ciently resolved. These results indicate that
in very massive discs with long di↵usion times (vertical and ra-
dial) the disc will behave more adiabatically, and the instability
will be quenched. The minimum solar mass nebula at 5 AU cor-
responds approximately to our model with 2 ⇢0 and the instabil-
ity might just be operative.

7. Summary and conclusions

We have studied the vertical shear instability as a source of tur-
bulence in protoplanetary discs. For that purpose we have per-
formed numerical simulations solving the equations of hydrody-
namics for a grid section in spherical polar coordinates. To study
the global behaviour of the instability we have used a large radial
extension of the grid ranging from 2 AU to 10 AU.

In a first set of simulations we show that the instability oc-
curs for locally isothermal discs where the radial temperature
gradient is a given function of radius. Our results on the growth
rates for the instability are in good agreement with the theoreti-
cal estimates by Urpin & Brandenburg (1998) and Urpin (2003),
and we find two basic growth regimes for the asymmetric and
antisymmetric modes as seen by Nelson et al. (2013). After 20
to 30 local orbits the instability saturates and is dominated by
the vertical motions, which cover the whole vertical extent of
the disc.

Interestingly, we find that the local radial wavelength of the
perturbations scales approximately with � / r2.5 in the saturated
state with a constant frequency. However, on a global scale sev-
eral jumps occur where the wavelengths are halved, such that the
global scaling follows �̄ / r with �̄/r = 0.03. We suspect that
the instability has the tendency to generate global modes that
show the observed wavelength behaviour according to Eq. (16).
Because of the radial stratification of the disc, jumps have to oc-
cur at some locations.

The waves approximately keep their shape and travel slowly
inwards. The two- and three- dimensional simulations yield es-
sentially the same results concerning the growth rates and satura-
tion levels of the instability because of its axisymmetric property.
The motions give rise to a finite level of turbulence and we cal-
culate the associated e�ciency, measured in terms of ↵. We first
show that, caused by the two-dimensionality, ↵ can be measured
directly from the two-dimensional simulations using the proper
equilibrium state of the disc. We find that the angular momentum
associated with the turbulence is positive and reaches ↵-values of
a few 10�4. For the isothermal simulations we find that at higher
numerical resolution ↵ becomes smaller, but viscous simulations
indicate a saturation at a level of about ↵ = 10�4 even for very
small underlying viscosities that are equivalent to ↵ < 10�6.

Adding radiative transport leads to a cooling from the disc
surfaces and the instability dies out subsequently. We then con-
structed models where the disc is irradiated from above and be-
low which leads to a nearly constant vertical temperature profile
within the disc. This again leads to a turbulent saturated state
with a similar transport e�ciency to the purely isothermal simu-
lations, or possibly slightly higher (see Fig. 17).

In summary, our simulations indicate that the VSI can indeed
generate turbulence in discs albeit at a relatively low level of
about a few times 10�4. This implies that even in (magnetically)
dead zones the e↵ective viscosity in discs will never fall below
this level. Our results indicate that in fully 3D simulations the
transport may be marginally larger, but further simulations will
have to be performed to clarify this point.
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Table 2. List of simulation and model parameters. From left to right: model name, radial domain size, numerical grid size,
density slope parameter, disc aspect ratio and space and time averaged stress to pressure value. The vertical and azimuthal
domain sizes for all simulations are θ = ±3.5H and φ = 0 − 2π , respectively.

Model rin, out/R0 Grid size (Nr × Nθ × Nϕ) p h ⟨α⟩/10−4 &[2π /']

p0.6h0.1 0.5–2.0 256 × 128 ×1024 − 0.66 0.1 8.4 ± 2.6 0.36
p1.5h0.1 0.5–2.0 256 × 128 ×1024 − 1.5 0.1 9.5 ± 2.1 0.38
p1.5h0.07 0.6–1.6 256 × 128 ×1464 − 1.5 0.07 2.7 ± 0.6 0.3
p0.6h0.05 0.7–1.4 256 × 128 ×2048 − 0.66 0.05 1.5 ± 0.3 0.2
p1.5h0.05 0.7–1.4 256 × 128 ×2048 − 1.5 0.05 1.2 ± 0.2 0.2
p1.5h0.03 0.8–1.2 256 × 128 ×3402 − 1.5 0.03 0.5 ± 0.2 0.08

the vertical shear instability, focusing particularly on the angular
momentum generating stresses and gas rms-velocities.

3.1 Stress-to-pressure ratio

To measure the strength of the VSI turbulence in the disc, we calculate
the Tr, ϕ component of the Reynolds tensor (Klahr & Bodenheimer
2003)

Tr,ϕ ≡ ⟨δ(ρvr )δvϕ⟩ = ⟨ρvrvϕ⟩ − ⟨ρvr⟩⟨vϕ⟩, (4)

where ⟨ ⟩ denotes an average in azimuth. Tr, ϕ measures the strength
of angular momentum transport generated by the disc turbulence.
To present the values in a non-dimensional fashion, we normalize
Tr, ϕ by the azimuthally averaged pressure to obtain α as defined by
Shakura & Sunyaev (1973):

α = Tr,ϕ

⟨P ⟩
. (5)

In Fig. 1 we present the cumulative space and time-averaged values
of α. The top panel of Fig. 1 compares simulations with two different
density slopes p = −0.66 and p = −1.5 at two different values of
the disc aspect ratio h = 0.05 and h = 0.1, whereas the bottom panel
compares simulations with four different values of h and a constant
value of p = −1.5.

The time evolution of the simulations with h = 0.1 shows a
rapid growth of the α value in the first few tens of orbits of the
simulation, after which a slower growth phase leads to growth to the
final saturated phase of the turbulence after around 100 orbits, where
values of α = 9 × 10−4 are reached. These values are comparable
to the ones we reported for our simulations in MK18 for simulations
with lower azimuthal but similar radial and meridional resolution.
A similar behaviour is observed for the simulations with h = 0.05,
which also show a first strong growth phase up to around 50 orbits,
after which slower growth phase is observed until around 300 orbits,
where a steady-state value of α = 1 × 10−4 is reached.

Comparing all four simulation runs, we find that the density slope
p does not significantly influence the average value of the turbulent
stresses. The comparison however shows a clear correlation of the
disc aspect ratio with the turbulent α values of the disc. This result
has been expected, as the disc aspect ratio is proportional to the
disc temperature and therefore a larger value of h leads to a larger
overall temperature in the disc and to stronger turbulent velocities
(as discussed further in section 3.2). We therefore ran additional
simulations with aspect ratios h = 0.07 and h = 0.03, presented in
the lower panel of Fig. 1 along the simulations discussed above. In
comparing these four simulation, we see a clear trend with disc aspect
ratio emerging: Simulations with larger h show overall stronger
turbulent angular momentum transport, with α = 9 × 10−4 for h
= 0.1 going down to 5 × 10−5 for h = 0.03. A full list of averaged
saturated α-values is listed in 2, where the errors listed are calculated

Figure 1. Cumulative space and time average of the stress-to-pressure ration
for simulations with different density slopes p (top) and aspect ratios h at
constant p = −1.5 (bottom).

for fluctuations in time only. The additional simulations also confirm
the trend for later onset of turbulent growth and longer times until
saturation.

Fig. 2 shows the dependence of α on height above the mid-plane,
where the top panel again compares two different density slopes at
h = 0.05 and h = 0.1, and the bottom panel for different h at p =
−1.5. The values are averaged in radial and azimuthal direction and
between 600 and 1000 reference orbits. We again find no evidence
that the initial density gradient p influences the generated stresses.
For both h = 0.05 and h = 0.1 the deviations between the curves
representing p = −0.66 and p = −1.5 are minor and can be explained
with statistical effects. In both the top and bottom panel, the trend
of overall increasing α with increasing h is observed. We also find
that higher h leads to a larger difference between the α values in the

MNRAS 499, 1841–1853 (2020)
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Flow topology Angular momentum transport

The VSI is characterised by strong up/down motions (« corrugation waves ») 
Limited radial angular momentum transport ( )α < 10−3

[Manger et al. 2020]
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M. Barraza-Alfaro et al.: Observability of the vertical shear instability in protoplanetary disk CO kinematics

Fig. 4. Results of the line of sight velocity map and extracted velocity perturbations from a VSI unstable disk 12CO(2–1) synthetic lines observations.
The velocity centroid of the line was computed at each pixel from mock data cubes with a velocity resolution of 0.05 km s�1. The input fields are
shown in Fig. 3, which corresponds to a disk after ⇠0.3 Myr of evolution. From top to bottom: results for disk inclinations of 5�, 20� and 35�.
First column: velocity centroid maps (v0). The images are convolved by a circular Gaussian beam of 50 mas and have no noise. Second column:
residual map of subtracting to v0 the velocity centroid map obtained from a disk following an equilibrium solution (veq). Third column: residual of
subtracting to v0 the best fit disk model obtained using EDDY (vmod). The images in this case are convolved by a 0.1 arcseconds circular Gaussian
beam and have an RMS noise of ⇠1.5 mJy beam�1. Fourth column: same as the third column, but for a 20 h Cycle 7 ALMA simulated observation
using configurations C43-8 and C43-5, with an RMS noise of ⇠1.5 mJy beam�1. The beam size is shown with a black circle at the bottom left of
each panel. The black-dotted ellipses in panels of Cols. 3 and 4 are the inner and outer edge of the region considered to obtain the best fit model.
The x- and y- axes indicate the RA and Dec angular offset from the central star’s position in arcseconds.

conditions from the simulation as input for the radiative trans-
fer calculations, to compute the synthetic observations of the
disk in equilibrium. The resulting residual map can be used as
the expected velocity perturbations in an ideal observation with
5 au resolution. In the third column, the residual of subtracting
to v0, in this case computed for a synthetic cube convolved by a
10 au circular Gaussian beam, the best fit disk model obtained
with EDDY (vmod). As detailed in Sect. 3.3, the model corre-
sponds to a geometrically thick disk, that follows power-law
profiles for the velocities in the radial and azimuthal directions.
The resulting residual maps are the observable velocity pertur-
bations in a 10 au resolution observation, with the addition of
white noise with an RMS level expected for a 20 h long-baseline
ALMA observation. Recovering properly the emission surface
and velocity profiles is harder for the highest inclination case
presented (i = 35�). We tested a higher inclination case with
i = 45�, and we found we were unable to recover the veloc-
ity perturbations reliably. The extracted velocity perturbations

match fairly well with the expected pattern for inclinations of
5 and 20 degrees. Additional modulations are present depend-
ing on the polar angle with respect to the disk’s major axis for
the inclination of 35 degrees case. These modulations are due
to systematic differences between the fitted and the true emis-
sion surface, with a secondary contribution from the errors on
the disk center, PA, and velocity profiles (see also Fig. 12 in Yen
& Gu 2020). In the fourth column, we applied the same pro-
cedure to extract the velocity perturbations shown in the third
column, but in this case for a v0 computed from the simulated
ALMA observations described in Sect. 3.2. We observe that the
perturbations are consistent with the expected VSI ringed struc-
ture, therefore, VSI-signatures are observable within ALMA
capabilities.

How the different velocity components contribute to the pro-
jected line of sight velocity (LOSV) is crucial to interpret the
velocity deviations. As shown by Teague et al. (2019) (see their
Fig. 5), a ring of super(sub) Keplerian azimuthal motions show

A113, page 7 of 17

[M. Barraza-Alfaro et al. 2021]
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Field line
A

B

A

B

[Balbus, & Hawley (1991)] 
[Balbus (2003)]
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Origin of turbulence in discs 
The Magnetorotational instability (MRI)

Magnetic tension between A and B transfers angular momentum between the particles and lead to a 
runaway



MRI-turbulent disc threaded by a large-scale B

32

[Jacquemin-Ide+2021] 
see also [Zhu & Stone 2018] 

Hhydrostatic actual Hdisk

MHD Wind

Accretion layer



MRI-driven angular momentum transport

 and can be  for sufficiently strong fieldsαMRI ≳ 10−2 𝒪(1)
33

Accretion disc dynamos 861

Table 2. Fundamental properties of the MRI turbulence, all evaluated at
the disc mid-plane and time-averaged. From left to right the columns are:
simulation identification label, plasma-β̂ parameter, toroidal component of
β̂, poloidal component of β̂, effective α̂-viscosity parameter, Reynolds com-
ponent of α̂, and Maxwell component of α̂. Parentheses indicate the ±1σ

range on the last digit.

ID ⟨β̂mid⟩t ⟨β̂mid
y ⟩t ⟨β̂mid

p ⟩t ⟨α̂mid⟩t ⟨α̂mid
Rey⟩t ⟨α̂mid

Max⟩t

ZNVF 68(6) 81(7) 1.6(1)e3 0.0088(7) 0.0020(2) 0.0067(5)
NVF-β5 41(3) 49(3) 9.3(6)e2 0.014(1) 0.0034(3) 0.0111(8)
NVF-β4 17(1) 21(2) 2.9(4)e2 0.035(3) 0.008(1) 0.027(2)
NVF-β3 2.1(9) 3(1) 3(1)e1 0.3(1) 0.06(2) 0.22(9)
NVF-β2 0.4(1) 0.5(2) 7(2) 1.0(4) 0.16(8) 0.9(3)
NVF-β1 0.31(8) 0.5(1) 2.8(5) 1.1(3) 0.12(5) 1.0(3)

parametrized by the non-dimensional effective α-viscosity param-
eter (Shakura & Sunyaev 1973)

α = Txy

pgas
(15)

αRey = Txy,Rey

pgas
(16)

αMax = Txy,Max

pgas
, (17)

where Txy = Txy, Rey + Txy, Max is the xy (i.e. rφ) component of
the total stress tensor, with Reynolds stress and Maxwell stress
components,

Txy,Rey = ρvxv
′
y (18)

Txy,Max = −BxBy. (19)

For each simulation, Table 2 provides values for β̂ and α̂, along with
their individual components, all evaluated at the disc mid-plane and
time-averaged.

Fig. 1 shows the time evolution of α for each simulation. The
ZNVF shows a relatively small ⟨α⟩t = 0.015 ± 0.003 with little
temporal variability, consistent with the results from Davis et al.
(2010) and Simon et al. (2012). When a net vertical magnetic flux is
introduced, the rate of angular momentum transport becomes both
enhanced and more variable, achieving ⟨α⟩t = 2.3 ± 0.5 for the
simulation with the strongest net vertical magnetic flux NVF-β1.

Treating the initial value of β at the disc mid-plane as a control
parameter, Fig. 2 shows how α scales with βmid

0 . We find that the
scaling is well fitted by a single power law, which closely matches
the expected slope of −1/2. Our best fit has the form

⟨α⟩t = 1.1 × 101 (
βmid

0

)−0.53
. (20)

This relation holds over four orders of magnitude in βmid
0 (two orders

of magnitude in Bz), and covers almost the entire range of net fluxes
for which the flux (a) boosts the efficiency of transport as compared
to zero-net field simulations and (b) allows linearly unstable MRI
modes. Alternatively, we can choose to normalize the stress by the
magnetic pressure, αmag = ⟨Txy⟩V /⟨pB⟩V . With this definition, the
effective viscosity becomes essentially independent of βmid

0 ,

⟨αmag⟩t = 0.30
(
βmid

0

)−0.040
. (21)

These results are consistent with previous works that find power law
and nearly constant scalings with β for α and αmag (Hawley et al.

Figure 1. Time evolution of the effective viscosity parameter α =
⟨Txy⟩V /⟨pgas⟩V for each simulation: ZNVF (purple lines), NVF-β5 (blue
lines), NVF-β4 (green lines), NVF-β3 (orange lines), NVF-β2 (red lines),
and NVF-β1 (black lines). The vertical dashed line at time t = 25 orbits
marks the start of all time averaging in this work. The effective viscosity
parameter is relatively small for the ZNVF, but increases dramatically with
increasing net vertical magnetic flux, even exceeding unity for simulations
NVF-β2 and NVF-β1.

Figure 2. Time-averaged effective α-viscosity parameter as a function of
the initial disc mid-plane ratio of gas pressure-to-magnetic pressure for sim-
ulations with a net vertical magnetic flux. The angular momentum transport
rate ⟨α⟩t is set by βmid

0 , following a power-law relation with the net verti-
cal magnetic flux. Rather than normalizing the total stress by the gas pres-
sure, α = ⟨Txy⟩V /⟨pgas⟩V (circles), if we instead normalize by the magnetic
pressure, αmag = ⟨Txy⟩V /⟨pB ⟩V (squares), then αmag becomes essentially
independent of βmid

0 .

MNRAS 457, 857–874 (2016)

 at B
iblio Planets on February 22, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

[Salvesen+2016]

β = 2c2
s /V2

A ∝ ρ/B2
z



MRI: conditions of existence
1.The magnetic field must be « sufficiently » weak: 

  
 
in practice for a « standard disk »:   [Lesur 2021]  
 
 

2.The coupling between the field and the gas must be sufficiently strong 
 

 
In practice, there are three « kinds » of magnetic diffusivities, so this 
becomes a bit more complicated… 
 

tAlfven > torbit→VA/H < ΩK

B < 12R−11/8
AU G

tAlfven < tdiffusion → VA/H > η/H2

34



Ionisation sources in protoplanetary discs
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~1AU ~30AU

Thermal 
ionisation

X-rays 
Far-UV

Cosmic rays

« non ideal » MHD effects 

Ohmic diffusion (electron-neutral collisions) 

Ambipolar Diffusion (ion-neutral collisions) 

Hall Effect (electron-ion drift) 

Amplitude of these effects depends strongly on location & composition



Ohmic resistivity
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MRI-driven turbulence 
is stabilised when 
Rm<100 [Jin 1996]

[Thi+2019]

W.-F. Thi: Grain charging in protoplanetary disks
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Fig. 8. Ohmic Elsasser number for the DIANA typical disk (first row). White contours correspond to the location of the total charge in the disk.
Ambipolar di↵usion Elsasser number is shown in the second row. The location where the C and C+ abundances are equal are overplotted in red.
The stability criterion (74) for all modes to be damped, corresponding to a dead zone, is shown in the lower panels (Jin = 1). The left column are
models with �mid=104 and the right column are models with �mid=106.14

Dead zone

« Historical » dead zone [Gammie 1996]

Rm = VAH/ηOhm



Ambipolar diffusion
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W.-F. Thi: MRI in protoplanetary disks

0.1 1.0 10.0 100.0
r [au]

0.0

0.1

0.2

0.3

0.4

z 
/ r

El(Ohm)=1

1e5

1e5

1e10

1e10

1e
20

-12

-10-1
0

log(total charge)=-8

-4 -2 0 2 4
log [El(Ohm)]

 
 

0.1 1.0 10.0 100.0
r [au]

0.0

0.1

0.2

0.3

0.4

z 
/ r

1e-5

El(Ohm)=1

1e51e
5

1e10

1e10

-12

-10-1
0

log(total charge)=-8

-4 -2 0 2 4
log [El(Ohm)]

 
 

0.1 1.0 10.0 100.0
r [au]

0.0

0.1

0.2

0.3

0.4

z 
/ r

A
m

=1

A
m

=1

C
=C

+

C=C+

C=C+

-4 -2 0 2 4
log [Am]

 
 

0.1 1.0 10.0 100.0
r [au]

0.0

0.1

0.2

0.3

0.4

z 
/ r

A
m

=1

A
m

=1

C
=C

+

C=C+

C=C+

-4 -2 0 2 4
log [Am]

 
 

0.1 1.0 10.0 100.0
r [au]

0.0

0.1

0.2

0.3

0.4

z 
/ r

Jin=1

1e2

1e
2

1e5

1e5

1e10
1e10

1e10

-4 -2 0 2 4
log [βmag

1/2 El(Ohm)]

 
 

0.1 1.0 10.0 100.0
r [au]

0.0

0.1

0.2

0.3

0.4

z 
/ r

Jin=1

1e2

1e2

1e5

1e5

1e10

1e10

-4 -2 0 2 4
log [βmag

1/2 El(Ohm)]

 
 

Fig. 8. The Elsasser Ohm number is shown in the upper panels for the DIANA typical disk and. The white contours corresponds the location of the
total charge in the disk. The middle panels show the ambipolar di↵usion number in the disk models. The location where the C and C+ abundances
are equal are overplotted in red. The criterion for all modes to be damped is shown in the lower panels. The lefts panels are models with �mid=104

and the right panels are models with 106.14

Am<100 MRI is quenched

[Thi+2019]

extended dead zone

Discs are too diffusive to sustain MRI turbulence. 

[Perez-Becker & Chiang 2011]

Am = V2
A /ΩηA



Summary
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T=800K ~30AU

MRI active 
region, strong 

turbulence

VSI region, vertical 
corrugation

GI region (if disk 
sufficiently massive) 

Spiral waves

« weak MRI », 
activated by 

cosmic rays (if any)
this is very schematic 
The presence of VSI depends on the disc opacity (grain size and vertical distribution)? 
GI behaviour depends on disc mass and opacity 
It neglects winds (see Wednesday)


