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Your participation is needed

Each kouign amann hidden in the slides is an opportunity
to get one of these speciality from Brittany for free if you answer
(correctly!) the question




@ Disc equilibrium

© Radial equilibrium
@ Vertical equilibrium
® Disc secular dynamics
® Mass and angular momentum conservation
@ The alpha disc prescription

® Some alpha disc solutions



by components:

1
0 = ——0,P + g + RQ?
p
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O=—;6ZP+gZ

Open question: should £2 depend on R? on z7?




Constrains on the rotation profile

The gravitational field derives from a potential g = — Vi
1
- P
1
aR 0= —;dZP—dzl//

e

1
—(0,p0xP — 0gpd,P) + ROQ* = 0
p
« Thermal wind equation »

® Unless under very specific circumstances (eg Barotropic flow), the
rotation profile must depend on z

@ This « vertical shear » Is driven by the thermal+density disc structure

@ It is too often forgotten...



Define the isothermal sound speed cS2 =
Assume the disc is locally-isothermal, i.e T'= T(R) and 0,T = ach =0

aZp GM*Z R2 R
p AR+ - o= n“iO‘(R)eXp[HZ<(1’?2+22)”2 ) 1)]

H? = ¢’R?/GM.

inthe limitz K R: p = pmid(R)f?XP( — Zz/(sz))



Radial equilibrium

_ 1o >
0= aR(pCS) +gR+RQ
P

@1 equation, 3 unknowns : p_:4(R), Q(R, z), CSZ(R) x T(R),
@ p_:4(R) will be constrained by the disc temporal evolution

@ T(R) will be constrained by radiative equilibrium

® For now, we assume a density and temperature profile:

R\ R\’
PmidR) = po S T(R) =1, =
0 0



Putting 1t all together

p q
R R
0 0

vertical equilibrium:

Radial equilibrium:
Q(R, z) = Qg

.
R

CX
R()) P2

« radial pressure

1+(p+q)<

support »
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« vertical shear »

[Nelson+ 2013]
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Disc structure example
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Figure 1. Basic state for the locally isothermal disc with ¢ = —1, p = —1.5 and ¢g = 0.05. The left-hand panel shows a contour plot of €2 on the (R, z) plane.
The middle panel is a similar contour plot, but this shows the magnitude of the vertical shear 0,(R2), which has a maximum at |z| ~ 1 (whereas the scaleheight

at the inner radial boundary is 0.05). The right-hand panel shows the density p.
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[Barker & Latter 2015]
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Disque secular dynamics
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Disc Dynamics
\ass consenation
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Disc Dynamics
Angular momentum conservation

a(pRuqS) — N N

@ Introduce U = Qg€ + V:

&

dp OI(pBA
_10 +

Q. R?
K™ o

pR*QV + pRv, v + RPe,| =0

Q R*— +——R <R2QK,0_V,, + va¢vr> + lRZQvaZ + va¢vZ] =0

7==xh

Cancel with mass conservation



Disc Dynamics
Angular momentum conservation

— = e === e —

Angular momentum conservation (once
mass conservation is taken into account)

_aQR2 laRz_ | +Rr| | 0
V,—— | VyV, VvV =
CUORTKT TR I TR L,
accretion radial stress vertical stress

(aka wind stress)
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Disc Dynamics

| [Shakura & Sunyaev 1973,
¢ CisC moda Lynden-Bell & Pringle 1974]

o, Lo -
—Q R? + R={pvv, =0
OR ROR | :
= aP
< The « ar disk » model Is a closure for a turbulent disk
pdv? = aP = ac’p so that 6v ~ \/ac,
“ The « a disk » model is equivalent to an « effective » viscosity:
® alpha stress: aP = (xcszﬁ = ac HQpp 5
dQ, 3 Vot = gacSH

“ viscous stress: —UR p=—vQrp

dR 2
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Disc Dynamics

| ) [Shakura & Sunyaev 1973,
a CisC model <COW d> Lynden-Bell & Pringle 1974]

02 1 0 ™
— +——Rpvp =0
ot R OR o 1o 2 o _, ,
— + Rac;2 =0
0 1 o ot R OR QR OR
pv,—Q R+ ——R*ac?Z =0
OR R OR

© Effectively a diffusion equation for the surface density
0% ~ — k05X with diffusion coefficient k = ac?/

@ Gives a typical timescale for the disk dissipation 7 = R*/k = R*Q/ac?

@ with T=10K (cs=100 m/s), R=100 AU around a solar mass star:
7 = 40000/a years

® Assuming a typical survival timescale ~ a few million years a ~ 1072
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VIScous solutions

8 T T T T T
[Lynden-Bell & Pringle 1974]
- § 102 [Tabone+2022]
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F16. 4. The surface density distribution with radius at four times for the & function initial
distribution of the disc. The lower dotted modification corresponds to a central star whose r (a U}

radius is 1072 in these units, while the upper modification corresponds to the solution in which

a no-central-flux boundary condition is imposed, corresponding to the throwing off of the
disc by a strong magnetosphere.

Viscous solution are characterised by accretion AND expansion
why? PR
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© Gravitational instability

@ Vertical shear instability

© Magnetorotational instabllity
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Question: when does the

red blob orbiting at L2
collapse under its own

gravity?

Surface density
2

Blob mass M = 7%

Free fall time of th blob
t 13 B 1 1/2
T=\eom ] =~ \zGx

Sound crossing time

= Alc,

tsound

Orbital time
_ O-1
torbit — QK

The blob will collapse if
l}”f < tsound and l}f < torbit
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t ] 12
U ﬂGZ

Grawtatlona\ mstablhty ina nutsheH

AIvvays stable unstable

timescale found imescale Lsound
A A
Ly
Ly
torbit . I : torbit
=
> ' ' > )
ﬂmin /lc )“max
@ Critical length scale when £, = fobit: 4. = C/ g
@ Unstable if #5(4,) < fo;
cL2k « Toomre criterion »

/ Gy < [A. Toomre, 1964]

« Q » parameter
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Gravitational instability and disk mass

© Relate the surface density to the disk mass:
2
2~ Mdisk/ ﬂRdisk

® Express the sound speed with the disk thickness
c, = QpH

@ Use the Keplerian velocity definition
Qy = GM,/ R

cQx  H Mgy

\)

26z R M,

Gravitationally-unstable disks are therefore very massive (typically
My 2 0.1M,)
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Gravitational instabilities
Nonlinear evoldtion

Consider a disc with Q>1
@Disc cools, cs decreases
®©When Q=1 Gl starts

©Gl unstable modes produce strong
shocks = heating

@Cs INcreases @)

oQ>1 Gl stops

o [Daniel Price] -

0 =

c L

\)

7Gx

[Lodato & Rice 2004]

----1t=205120
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Gravitational instabilities
Cooling

Teool = 10 Q-1

WRin

|

—a—

[Gammie 2001]

The outcome depends on the cooling timescale. If the cooling is sufficiently fast, the

disc heating can’t adjust, and the disk forms « clumps » .



Occurence map
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r (AU)

Expects self-gravitating discs for R>30 AU that
are strongly accreting (i.e. you disks)
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Gravitational instabllity in the literature
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|Speedie et al., 2024, Nature]
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© Gravitational instability

@ Vertical shear instability

© Magnetorotational instabllity

25



Vertical shear [Urpin & Brandenburg 1998
A powerful source of instability Nelson et al. 2013
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® Consider a spherical blob that we displace « almost » vertically
@ The blob must conserve its specific angular momentum & = R?*Q

9@ |t ends up in a region of lower &£ — it rotates faster than the surrounding disk—it moves further out
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VS|
The curse of the cooling timescale

— ——
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® As the particle moves up, it inflates (lower pressures!) and cools down (adiabatic expansion)
® Since the disc is vertically isothermal, the blob is cooler than the background, so it is denser

@ If we don’t heat up the blob rapidly, it comes back down because of vertical buoyancy/gravity

VSI requires a « fast » cooling/heating of the disc



VS| in practice

Flow topology
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Fig. 19. Velocity in the meridional direction, uy, in units of local Kepler
velocity for an irradiated run without viscosity at resolution 1024 X 256

Angular momentum transport
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[Manger et al. 2020]

The VSl is characterised by strong up/down motions (« corrugation waves »)

Limited radial angular momentum transport (@ < 107
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VS In the literature
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Fig. 4. Results of the line of sight velocity map and extracted velocity perturbations from a VSI unstable disk 12CO(2—1) synthetic lines observations.

[IM. Barraza-Alfaro et al. 2021]
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© Gravitational instability

@ Vertical shear instability

© Magnetorotational instabllity
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Origin of turbulence in discs

[Balbus, & Hawley (1991)]
[Balbus (2003)]

— —

%,

Magnetic tension between A and B transfers angular momentum between the particles and lead to a
runaway 31



MRI-turbulent disc threaded by a \arge sca\e B

636 Omnerorbn‘s S
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[Jacguemin-lde+2021] ; 0.0001
see also [/nu & Stone 2018] =
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[Salvesen+2016]
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ey 2 1072 and can be O(1) for sufficiently strong fields
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MRI: conditions of existence

1.The magnetic field must be « sufficiently » weak:
tAlfven > torbit_> VA/ H < £2K

in practice for a « standard disk »: B < 12Rglljl/ 8 G [Lesur 2021]

2.The coupling between the field and the gas must be sufficiently strong
2
Eatfven < Ldiffusion — Va/H > n/H

In practice, there are three « kinds » of magnetic diffusivities, so this
becomes a bit more complicated...
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lonisation sources In protoplanetary discs

—_— —

Thermal D
|

lonisation L
~1AU ~30AU
« non Ideal » MHD effects

® Ohmic diffusion (electron-neutral collisions)
© Ambipolar Diffusion (ion-neutral collisions)
© Hall Effect (electron-ion drift)

Amplitude of these effects depends strongly on location & composition
35



Ohmic resistivity

—_— e e ————— —

Z/T

_III 1 1 1 LI III 1 1 1 1

E 4 2 0 2 4

. 1e10° =,
03 __ - \

MRI-driven turbulence
IS stabilised when
RmM<100 Jin 1996]

Dead zone
0.1 1.0 100 100.0 |
r [au] [Thi+2019)]

» « Historical » dead zone [Gammie 1990]
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Ambipolar diffusion

Am = V3/Qn,

0.1 1.0 10.0 100.0 [Thi+2019]
r [au]

* Am<1OO * MR' |S queﬂChed [Perez-Becker & Chiang 2011]

Discs are too diffusive to sustain MRI turbulence.
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MRI active VS| region, vertical G'! r.egion (if diSk
region, strong corrugation suﬁcently massive)
turbulence Spiral waves

« weak MR »,
activated by
cosmic rays (if any)

this is very schematic

The presence of VS| depends on the disc opacity (grain size and vertical distribution)?
Gl behaviour depends on disc mass and opacity

It neglects winds (see Wednesday)
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