Basics of protoplanetary disc structure and dynamics II

Geoffroy Lesur, IPAG, Grenoble

Roscoff PNPS JWST School Oct. 2 2024

Dust dynamics

- Radial drift
- Settling
- Winds
 - Photoevaporation & MHD disc winds
 - MHD wind basics
 - Impact on the secular evolution

Wind-dust interaction

Dust & gas dynamics

Dust grains dynamic 101

The dust grain is coupled to the gas through a drag:

$$m_{\text{grain}} \frac{d\vec{v}_{\text{grain}}}{dt} = -\frac{m_{\text{grain}}}{\tau_s} (\vec{v}_{\text{grain}} - \vec{v}_{\text{gas}})$$

This introduces the gain's stopping time au_s

In disks, one introduces the Stokes number: St = \u03c6 \u03c6 \u03c6 \u03c6 K

Relating St to the grain size

Assumes spherical grains. Fluffy grains typically modelled assuming an « effective » density

Stokes number in actual discs

- Generally speaking, St increases with radius and altitude above the midplane
- Imm size spherical grains have St=1 @ 30 AU

Dust radial drift

As a rule of thumb, grains always drift towards high gas pressure regions

Dust vertical settling

• Grains should settle towards the midplane on a timescale $\tau_{\rm settling} \simeq z/\dot{z} \simeq [\Omega_K St]^{-1}$

- ⁹ By 1 million years, all grains with $St > 10^{-3}$ @ 100 AU should have settled
- Something's happening to prevent settling of low « ish » St...

Dust turbulent diffusion

On can treat the grain population as a « fluid » and write an equation on the dust density

[Dubrulle +1995]

$$\frac{\partial \rho_d}{\partial t} = \frac{\partial}{\partial z} \left(z \Omega_K^2 \tau_s(z) \rho_d \right) + \frac{\partial}{\partial z} \left[D_z \rho_g \frac{\partial}{\partial z} \left(\frac{\rho_d}{\rho} \right) \right]$$
Terminal velocity of dust grains
* turbulent diffusion coefficient *

Dust layer thickness

Result of the advection-diffusion equation for dust grains

$$\rho_d(z) = \rho_d(0) \exp\left(-\frac{z^2}{2H_d^2}\right) \text{ with } \frac{H_d}{H} = \frac{1}{\sqrt{1 + \frac{St_0\Omega_K H^2}{D_z}}}$$

In the large St limit
$$H_d = H\sqrt{\frac{D_z}{St_0\Omega_K H^2}}$$

- Typical values for vertical dust diffusion
 - MRI: $D_z/\Omega_K H^2 \simeq 5 \times 10^{-3}$ (Fromang & Papaloizou 2006)
 - VSI: $D_z/\Omega_K H^2 \sim 0.2$ (Dullemond et al. 2022, but see also Stohl & Kley 2017)

• GI:
$$D_z / \Omega_K H^2 \simeq 10^{-2}$$
 (Riols et al. 2020)

NB: D_z and α can be very different!

Comparing dust settling models to observations

VSI is excluded from regions where we observe strong settling [e.g. Villenave+2020, 2024]

Vertical shear instability with multiple dust grains

Time=4869.5693

Photo-evaporation

MHD disk wind (MDW)

Driven by the accretion energy released by the 0 disk

Requires a large-scale B field [Ferreira & Pelletier 1993,1995]

B

0

 10^{0}

 $v_{\rm p}/(\rm km~s^{-1})$

1

A little experiment

Internals of magnetic breaking

Back to the accretion problem

$$\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} R \overline{\rho v_r} + \left[\rho v_z \right]_{z=-h}^{+h} = 0$$

$$= \zeta \Omega_K \Sigma \quad \text{(mass loss parameter)}$$

A wind introduces 2 new parameters: ζ and λ

Two « flavours » of MHD wind

A sample of MHD disc winds

Fig. 2. Flow topology in the fiducial run (ambipolar diffusion only $\Lambda_A = 1$). Top row: poloidal streamlines (white) and log of the sonic Mach number. Bottom row: poloidal field and log of density, normalised so that the midplane density at R = 1 is unity. Note that the colour scales are identical between the columns. From left to right the disc magnetisation increases: $\beta = 10^5$; 10^3 ; 35. The green lines denotes critical lines of the flow: Alfv'enic (plain) and fast magnetosonic (dot-dashed). The green dashed line represents the disc "surface" where the flow becomes ideal, arbitrarily located at z = 3.5h for all of the solutions.

Relating accretion, ejection and field strength

- Ass accretion is mostly controlled by the magnetic field intensity and depends only weakly on Σ
- Mass loss rate is approximately equal to mass accretion rate.

The big unknown for a predictive theory is $B_{z}(R, t)$

Impact on disc evolution

In MHD disk winds, the angular momentum is « extracted » vertically, so there is no radial expansion

... or maybe there is (Yang & Bai 2021)

Dust Dynamics in wind-driven disc Dust Settling

Observed dust settling is compatible with a wind-driven accretion disc

Dust grain entrainment

- Maximum entrained dust size \sim a few μ m
- Mostly in the inner regions (dust settling) outside)
- Appears as a faint conical emission in synthetic observations

MHD $\beta = 10^4$ 0.1 *µ*m -1 0 1

arcsec

H band image

1 *µ*m

Gas density & magnetic field lines Ambipolar-only disc (R>10 AU)

C33999 {.

RHO

9.9e-01

0.01

0.001

0.0001

1e-5

1e-6

1e-7

1.0e-08

Temporal evolution

Spontaneous structure formation in « windy » disc

Common ingredients are

- Ambipolar diffusion (valid for R>~5AU)
- Large scale magnetic field (fossil field?) B \geq a few mG @ 10 AU ($\beta \leq 10^4$)

A feedback loop

This drags poloidal magnetic field lines towards the gap until magnetic pressure equilibrium is reached The magnetic pressure deficit triggers an ion drift towards the « gap »

MHD-driven rings are observable

[Riols+2020]

MHD wind spontaneously create visible dust ring structures

Summary

Supplementary material

Planet-disc-wind interaction in action

[Wafflard-Fernandez & Lesur 2024] RWI-generated 0 Planet's wake Planet's gap vortices (spiral shock) 0.4 -2 0.2 log(RHO) N 0.0 -0.2 -0.4 -5 circumplanetary 3Mj, $\beta_0 = 10^\circ$ disc 1 -0 0.75 .00 1.25 2.00 1.50 1.75 2.25 2.50 R -1 The Idefix code -1 0 1

Gap opening by embedded planet in a windy disk

Planets still open gaps

Gap opening criterion and depth depends on the field strength

Gap morphology

- Magnetised gaps become asymmetric as time goes on
- Stronger field amplifies the effect

Wafflard-Fernandez & Lesur 2024

A collapsing core

- Chemical network to account for non-ideal effects [Ohmic & Ambipolar]
- Setup inspired from Masson et al. (2016):
 - Start from a uniformly rotating supercritical $1~M_{\bigodot}$ core
 - initial $R_{\rm core}$ = 2500 au
 - Barotropic EOS : $T \propto T_0 \sqrt{1 + \left(\frac{n}{n_{cr}}\right)^{4/5}}$
 - $n_{cr} = 10^{11} \text{ cm}^{-3} \Leftrightarrow 1^{st}$ hydrostatic core

Anisotropic infall and a flattening of the core
Field line deformation that acquire the classic hourglass shape
Field line dragging

Field line dragging

Let's zoom in

Long timescale evolution

Top view [Mauxion+2024]

 $n~({\rm cm^{-3}})$

Constraining the large scale field

B must decay by ~10² at 10 AU from class 0 to class II