Formation of planetary systems

Sean Raymond

CNRS *Directeur de Recherche* Laboratoire d'Astrophysique de Bordeaux <u>planetplanet.net</u>

(with a few slides from A. Izidoro, P. Armitage, M. Lambrechts, A. Morbidelli)

Outline

 Observational constraints (and the Solar System in context)

- 2. Stages of planet formation
- 3. Formation models: exoplanets
- 4. Formation models: Solar System

1. Observational constraints

- Solar System in context
- Solar System
- Exoplanets
- Planet-forming disks

The Solar System

The exo-Solar System

Measure:

- mass (M_{Jup} sin i)
- orbital size
- orbital shape (eccentricity)

(Sun's radial velocity amplitude due to Jupiter ~12 m/s, P=12 yr)

Planet formation

Constraints

protoplanetary disks

- meteorites
- asteroids and comets
- planets

close-in "super-Earths"

Venus

Mercury

giant exoplanets

HD 96167 b

Solar System constraints

Planetary masses and compositions

mostly H/He with denser cores

combination of rock+ice+gas

Planetary orbits

- low eccentricities (e~0.05 for Jup/Sat, terrestrial planets)
- low inclinations (<few degrees)

Planetary orbits not fixed in time

Asteroid belt

Demeo & Carry 2014

- Total mass ~ 5 x 10⁻⁴ M_{Earth}
- Diversity in composition
 - Rough inner (S-type)/outer (C-type) dichotomy

Kuiper belt

- Total mass ~ 0.1 M_{Earth}
- Variety of dynamical classes

Gladman & Volk (2021)

Evidence for "Planet Nine"?

Batygin & Brown (2016); Brown & Batygin (2016); Batygin et al (2019), ...

Exoplanet constraints

Exoplanet size distribution

Cloutier (2024) after Fulton et al (2017); Fulton & Petigura (2018); van Eylen et al (2018), ...

Exoplanet occurrence rate

16 12 8 6 (⊕ 4 3	<0.019% <0.03% <0.024% 0.029 ± 0.02 % <0.065%	0.0406 ± 0.069 % 0.025 ± 0.027 % <0.015% <0.039% <0.042%	0.162 ± 0.087 % 0.09 ± 0.082 % <0.062% 0.0609 ± 0.047 % 0.13 ± 0.063 % 0.075 ±	0.165 ± 0.1 % 0.12 ± 0.087 % 0.061 ± 0.04 % 0.154 ± 0.1 % 0.32 ± 0.19 % 1.1 ±	0.1 ± 0.072 % 0.158 ± 0.074 % 0.11 ± 0.11 % 0.35 ± 0.17 % 0.7 ± 0.38 % 2.65 ±	0.258 ± 0.12 % 0.21 ± 0.15 % 0.28 ± 0.17 % 0.46 ± 0.44 % 2.07 ± 0.59 % 3.88 ±	0.573 ± 0.28 % 0.28 ± 0.27 % 0.504 ± 0.3 % 0.463 ± 0.31 % 2.07 ± 0.9 % 6.61 ±	0.49 ± 0.43 % 0.86 ± 0.43 % 0.48 ± 0.38 % 1.48 ± 0.66 % 3.64 ± 1.3 % 3.9 ±	<0.79% 2.09 ± 0.96 % 0.99 ± 0.93 % 1.05 ± 0.74 % 3.02 ± 1.9 % 7.46 ±	<2% 2.1 ± 1.5 % <2.2% 3.16 ± 1.5 % 3.35 ± 2.4 % 9.95 ±		10 ⁰	a
2.5 2 1.75 1.5 1.25 1 0.75 0.5	<0.058% <0.058% 0.027 ± 0.026 % 0.083 ± 0.06 % 0.157 ± 0.074 % 0.172 ± 0.12 % 0.27 ± 0.092 % 0.25 ± 0.26 %	0.036 % 0.023 ± 0.024 % 0.0635 ± 0.049 % 0.097 ± 0.083 % 0.22 ± 0.2 % 0.1 ± 0.096 % 0.29 ± 0.16 % 0.26 ± 0.17 %	0.051 % 0.246 ± 0.12 % 0.29 ± 0.19 % 0.561 ± 0.28 % 0.919 ± 0.28 % 0.25 ± 0.19 % 1.2 ± 0.45 % 2.65 ± 0.86 %	0.3 % 1.03 ± 0.39 % 0.69 ± 0.47 % 1.4 ± 0.44 % 1.91 ± 0.5 % 2.4 ± 0.7 % 3.18 ± 1.3 % 9.19 ± 2.9 %	0.45 % 3.09 ± 0.82 % 1.29 ± 0.62 % 1.71 ± 0.91 % 3.56 ± 0.84 % 3.36 ± 1.2 % 5.23 ± 1.4 % 6.6 ± 5.9 % 3 1 0.59 %	0.79 % 5.46 ± 1.1 % 0.55 ± 0.53 % 2.4 ± 0.82 % 2.5 ± 2.6 % 3.44 ± 1.6 % 8.66 ± 2.9 % <14% 6 3 oriod (0)	1.4 % 4.95 ± 1.5 % 2.3 ± 1.2 % 1.4 ± 1.1 % 0.945 ± 1.1 % 6.04 ± 2.7 % 4.1 ± 4 % <41% 2 6	1.7 % 6.16 ± 2.1 % 2 ± 1.8 % 2.78 ± 2.3 % 1.8 ± 2 % 9.76 ± 6.3 % <22%	2.4 % 6.2 ± 2.9 % 2.5 ± 2.4 % 3.92 ± 2.4 % <9.8% <9.8% <53% <91% 28 25	5.9 % 5.9 ± 5.4 % 16 ± 10 % 17 ± 12 % <23% <23% <35% <60% <79%	00	10^{-2}	$(\ln R_p)d(\ln P)$

Hsu et al (2019)

Period Ratio distribution

Winn & Fabrycky 2015

Radial distribution of gas giants

Distribution

Semi-Major Axis [Astronomical Units (AU)]

RV planets only, with M sin i $> 0.1 M_{Jup}$

Eccentricity distribution (giants)

Semi-Major Axis [Astronomical Units (AU)]

Wright et al 2011

Low-mass stars have more close-in planets

Mulders (2018)

Protoplanetary disks

Disks around young stars: Hubble

IRAS 04302+2247

Orion 114-426

ALMA Images of young disks

ALMA Partnership 2015

Andrews et al (2016)

DSHARP disks (ALMA)

Andrews et al (2018)

Disk masses

Williams & Cieza 2011

Mdisk-Mstar correlation (Md~Mst^{1.6}) — but lots of scatter

Pascucci et al (2016)

Are disk masses underestimated?

Disk masses appear too small to explain the masses in observed planetary systems

Mulders (2018)

Gas disks (inferred from hot dust) dissipate on a few Myr timescale

Mamajek 2009

Observational constraints: summary

- Huge diversity of planetary systems
 - Solar System unusual at ~1% level
 - "Super-Earths" very common
- The window for most planet formation: the few million year lifetime of gaseous disks

2. Stages of planet formation

- planetesimal formation
- pebble/planetesimal accretion
- orbital migration
- giant impacts
- gas accretion
- giant planet scattering

Planet formation: the cast of characters

pebbles: ∼Imm-I0cm

planetesimals: ~10-1000km terrestrial planetary embryos (=protoplanets): ~Moon-sized or larger

giant planet "cores" or "embryos": ~Earth-sized or larger

Physics of growth between μm and 10⁴ km

10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104 105 106 107 m

μ m	cm	m	km	M _{Earth}
Physics of growth between μ m and 10⁴ km

Physics of growth between μm and 10⁴ km

10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104 105 106 107 m

Blum & Wurm (2008)

Slide credit: P.Armitage

Physics of growth between μ m and 10⁴ km

Physics of growth between μm and 10⁴ km

Physics of growth between μ m and 10⁴ km

Physics of growth between μ m and 10⁴ km

Forming the first planetesimals

Slide credit: P.Armitage

(ii) Particle drift

- pressure support on the gas reduces the orbital velocity of the gas
- particles feel a headwind

 gas drag forces the particles to drift inwards

Growth and inward drift of dust

Birnstiel et al (2016)

The Stokes number

• Stokes number = the stopping time (due to gas drag) / the orbital timescale

Fastest drifting particle ("pebbles") are where St=I ("St = one"), or "stones" — Aurelien Crida

 $\rho_{\rm p}/\rho_{\rm g} \sim 1$

- Streaming instability
 leads to local clustering
- gravitational collapse of overdensities to km+ scale planetesimals

CALIFORNIA ACADEMY OF SCIENCES

Simulations: Jake Simon, Zhaohuan Zhu

Streaming Instability

- Forms planetesimals up to R~300km
- Characteristic birth size distribution similar to asteroids

Johansen et al (2015); also Simon et al (2016)

The streaming instability requires an enhancement in the dust-to-gas ratio

Yang et al (2017)

Planetesimal formation models: dust growth/drift with disk evolution

ເ=ມ.ບ

Model of Izidoro et al (2022)

Planetesimal formation in a gaseous disk assuming pressure bumps (traps)

1) at T~1400 K, near the silicate sublimation line due to thermal ionization of the gas disk (Desch & Turner 2015; Flock et al 2017);

2) at T~170 K, the water snowline (Muller et al 2021, Charnoz et al 2021);

3) at T~30 K, the CO-snowline (Qi et al 13, Flock et al 2015, Vanthoff et al 2017, Bosman & Banzatti 2019, Vericel & Gonzalez 20)

A model with dust coagulation/drift and three "pressure bumps"

Izidoro et al (2022)

Izidoro et al (2022)

Planetesimal formation models: dust growth/drift with disk evolution

Slide credit: M. Lambrechts

Pebble accretion

Lambrechts & Johansen, 2012

Pebble accretion is key for forming giant planet cores

Lambrechts & Johansen (2012)

Pebble accretion is self-limiting

Above "pebble isolation mass", a planet creates an exterior pressure bump that traps pebbles

(~20 M_E for typical disk at Jup's orbit)

Lambrechts et al (2014); also Bitsch et al (2018)

Planetesimal accretion

(dominates in terrestrial planet region)

 Runaway growth: big embryos get bigger faster by eating planetesimals

Kokubo & Ida 2002

Gravitational planet-disk interaction: orbital migration

P.Armitage

Type I migration

Matters for Mp >~ MEarth

More massive planets migrate faster

Pierens et al (2013)

Armitage 2011

Migration stops at the inner edge of the disk

Masset et al (2006)

also Romanova & Lovelace (2006); Flock et al (2017)

Core accretion

Two planets growing in the same disk tend to end up at ~the same mass

Bergez-Casalou et al 2022

Type 2 migration

- Carve gap in disk
- Migration almost always inward
- Special cases: 2+ planets can migrate outward (e.g., Grand Tack model)

P.Armitage

Inside-out photo-evaporation of gaseous disk

Armitage (2010)
Giant exoplanets

Wright et al 2011

Planet-planet scattering

Simulation Time: 00.0 years

Giant impacts between embryos

credit: Agnor & Asphaug

Final planetesimal impacts: "late accretion/veneer"

Estimate: ~0.5% of Earth's mass accreted from planetesimals after Moon-forming impact (Day et al 2007; Walker 2009)

Summary: Stages of planet formation

- planetesimal formation
- pebble/planetesimal accretion
- orbital migration
- giant impacts
- gas accretion
- giant planet scattering

3. Formation models: exoplanets

- Close-in "super-Earths"
- Gas giants

Super-Earths: formation models

Super-Earths and the Solar System

Schlaufman (2014); Kepler data from Batalha et al (2013) and Rowe et al (2014)

Occurrence rate: ~50% (Mayor et al 2011; Howard et al 2012; Fressin et al 2013, Mulders et al 2018;

many more)

Period Ratio distribution

Winn & Fabrycky 2015

Period ratio distribution

Lissauer et al (2011); Fabrycky et al (2014)

Orbital distance

Terquem & Capatoizjeu & 2007), 2016 N 210 85 NBIsbay (2010), Rogersaes an (2011); Swift (22,212), Decosore table (2005), Ogihara et al (2015), Raymond et 20(6), 2216 Croale (20117) (2013)

Growth timescales are very short

Bolmont et al 2014

Gas disks (inferred from hot dust) dissipate on a few Myr timescale

Mamajek 2009

Migration timescales are very short: "in-situ" accretion is impossible

See Inamdar & Schlichting 2015, Schlichting 2014; Ogihara et al 2015; Grishin & Perets 2015

PlaRetateemalsyos

~Maoskynass (10% M_{Earth})

50% rock, 50% ice 5-10 M_{Earth}

inward-drifting pebbles

Pebble accretion is far more efficient past the snowline (Lambrechts et al 2014; Morbidelli et al 2015; Ormel 2017)

All roads lead to migration...

Orbital migration

Matters for Mp >~ MEarth

More massive planets migrate faster

Pierens et al (2013)

Migrating planets are trapped at the inner edge of the disk

Masset et al (2006); Romanova & Lovelace (2006)

Planets out and

destroys resonances

(e.g., Pichierri et al 2019)

4:3

2:1

4:3

3:2

3:2

~Mars-mass (10% M_{Earth}) Gaseous disk dissipates after a few million years

The period ratio distribution

The period ratio distribution

Illustration

(Gillon et al 2017, Luger et al 2017)

Giant (exo)planets

Radial distribution of gas giants

Semi-Major Axis [Astronomical Units (AU)]

RV planets only, with M sin i $> 0.1 M_{Jup}$

Distribution

Giant planet-metallicity correlation

Johnson et al (2010); also Gonzalez (1997); Santos et al (2003); Fischer & Valenti (2005)

Formation models for giant planets

- Disk instability
- Core accretion

Disk instability

• Requires a region in the disk to be Toomre unstable

Disk instability

Mayer & Quinn (2016)

Gravitational instability: only important for massive wide-orbit planets

Kimura & Tsuribe (2012)

Clumps formed by disk instability migrate inward rapidly

Baruteau et al (2012); "tidal downsizing hypothesis" by Nayakshin (2010)

Core accretion

Growth/migration tracks with pebble accretion

Johansen & Lambrechts (2017); after Bitsch et al (2015)

How did Jupiter end up at 5 AU?

- Jupiter's core formed at 15-20 AU (Bitsch et al 2015)
- Very low viscosity disks: very slow type 2 migration (e.g., Bitsch et al 2019; Griveaud et al 2024)
- Inner disk evaporated away, planets could't migrate closer than ~I AU (Alexander & Pascucci 2012)
- Saturn stopped or reversed Jupiter's migration (Masset & Snellgrove 2001; Grand Tack model)

The giant exoplanet eccentricity distribution: planet-planet scattering

Giant exoplanets

Semi-Major Axis [Astronomical Units (AU)]

Scattering vs accretion

Requirement for ejection in one encounter: v_escape (planet) > v_escape (system)

The "Safronov number": scattering vs accretion

 Ratio of escape speed from planet's surface to escape speed from system at planet's orbital radius

$$\theta^{2} \equiv \left(\frac{Gm}{R_{p}}\right) \left(\frac{r}{GM_{\star}}\right)$$
$$= 10 \left(\frac{m}{M_{J}}\right) \left(\frac{M_{\odot}}{M_{\star}}\right) \left(\frac{R_{J}}{R_{p}}\right) \left(\frac{r}{5 \text{ AU}}\right)$$

The "Safronov number": scattering vs accretion

- Saf>I: high-mass or distant planets scattering
- Saf<1: low-mass or close-in planets accretion

$$\theta^{2} \equiv \left(\frac{Gm}{R_{p}}\right) \left(\frac{r}{GM_{\star}}\right)$$
$$= 10 \left(\frac{m}{M_{J}}\right) \left(\frac{M_{\odot}}{M_{\star}}\right) \left(\frac{R_{J}}{R_{p}}\right) \left(\frac{r}{5 \text{ AU}}\right)$$

Giant planet eccentricities correlate with Safronov#

Ford & Rasio (2008)

Planet-planet scattering

Simulation Time: 00.0 years

Credit: Eric Ford

Survivors of planet-planet scattering match the eccentricity distribution

To fit eccentricity distribution, 75-95% of giant exoplanet systems must be survivors of instability

(Juric & Tremaine 2008; Chatterjee et al 2008; Raymond et al 2010)

Raymond et al (2009)

Planet-planet scattering generates free-floating planets

Several hundred FFPs known to date (typically Jupiters) [e.g., Mroz et al 2017, Kirkpatrick et al 2019, Miret-Roig et al 2022, Sumi et al 2023]

Summary of exoplanet formation models

Close-in "super-Earths"

- In-situ growth impossible
- Migration then instability ("breaking the chains")

Gas giants

- Disk instability only for outer high-mass planets
- Core-migration-accretion
- Planet-planet scattering

4. Formation models: Solar System

- Constraints + timeline
- The "Classical model"
- Alternate models
- Origin of water on Earth

A few key events in Solar System history that (almost) everyone agrees upon...

rough time order

- I. Planetesimals formed
- 2. Planetary embryos formed
- 3. Gas giants formed (and migrated)
- 4. Giant planet instability
- 5. Moon-forming impact

Key event 1: formation of two classes of planetesimals

Did they form at different times or in different places?

NC and CC planetesimals were forming at the same time

Kleine et al (2020)

They formed in different places!

Surviving NC and CC planetesimals have overlapping orbits

Gradie & Tedesco 1982; Demeo & Carry 2014

Planetesimal formation models: dust growth/drift with disk evolution

ເ=ມ.ບ

Three rings of planetesimals

Key event 2: growth of planetary embryos and giant planet cores

inside snow line: planetesimal accretion

beyond snow line: pebble accretion

terrestrial planetary embryos: ~Mars-sized

giant planet "cores": ~Earth-sized or larger

Key event 3: Growth of Jupiter and Saturn

Key event 4: the giant planet (dynamical) instability

Nesvorny (2011) also Tsiganis et al (2005), Morbidelli et al (2007), Batygin & Brown (2012), Clement et al (2021)...

The instability explains:

- Giant planets' orbits
- Inclinations of Jupiter's Trojan asteroids
- Capture of irregular satellites of the giant planets
- Orbital structure of the Kuiper belt

Nesvo Nesv

When did the instability happen?

- "Terminal lunar cataclysm" likely
 sampling bias (Chapman et al 2007, Boehnke & Harrison 2016, Zellner 2017, Hartmann 2020)
- New analysis: instability earlier than ~100 Myr
 - Binary Jupiter Trojan (Nesvorny et al 2018)
 - Highly siderophile
 elements++ (Morbidelli et al 2018)
 - Reset ages in meteorite parent bodies (Mojzsis et al 2019

Original "Nice model" instability timing (Gomes et al 2005)

New results based on Pd-Ag isotopes and asteroid reset ages favor instability shortly after gas disk dispersal (Hunt et al 2022; Harper Edwards et al 2024)

Possible instability triggers

- I. Gas disk-driven instability: instability happens at gas disk dispersal (Liu et al 2022)
- 2. Self-triggered instability: instability within few Myr of gas dispersal (Ribeiro de Sousa et al 2020)
- 3. Planet-planetesimal disk interactions: instability ~30-60 Myr after gas dispersal (Quarles & Kaib 2019; Ribeiro de Sousa 2020)

Possible instability trigger: inside-out photo-evaporation of gaseous disk

Ercolano & Pascucci (2017)

Giant planet instability driven by dispersal of gaseous disk

Liu et al (2022)

Another example: self-triggered instability after gas disk dispersal

Remember : the Solar System's dynamical instability was very gentle when compared with exoplanets

Wright et al 2011

Key event 5: the Moon-forming impact

Jacob Kegencis

Thought to represent final embryo-embryo impact, at t~50-100 Myr (e.g. Kleine et al 2009)

Hafnium—Tungsten Dating

credit: viranga13 (Wikimedia commons)

Hf/W isotopes constrain Earth's core formation time (last giant impact)

Half-life of Hf decay = 8.9 Myr

$$\varepsilon_{W} = \left[\frac{\left(^{182} \mathrm{W} / ^{184} \mathrm{W}\right)_{\mathrm{sample}}}{\left(^{182} \mathrm{W} / ^{184} \mathrm{W}\right)_{\mathrm{standard}}} - 1\right] \times 10^{4}$$

Nimmo & Kleine (2015)

Terrestrial planet formation models

The goal: reproduce the Demeo (inner) Solar System

2 MEarth

Number, masses

Orbits

Growth timescales, compositions, isotopic ratios 5x10-4 MEarth

Total mass S/C dichotomy Orbital distribution

Raymond et al 2009

Wetherill 1991; Chambers 2001; O'Brien et al 2006; Raymond et al 2006, 2009, Morishima et al 2008, 2010; Nagasawa et al 2005, 2007; Thommes et al 2008; Fischer & Ciesla 2014; Izidoro et al 2014, 2015, Kaib & Cowan (2015), Woo et al (2020, 2021)

Possible solutions to the small Mars problem

I. Empty asteroid belt

Assumption: few (if any) planetesimals formed in Mars region/asteroid belt

HL Tau's disk (ALMA Partnership et al 2015)

I. Empty asteroid belt

Assumption: few (if any) planetesimals formed in Mars region/asteroid belt

I. Empty asteroid belt

Izidoro et al 2022

C-types and some of Earth's water from giant planet region

NC asteroids (Vesta, Irons, S-types, ...) scattered out from terrestrial planet region

Raymond & Izidoro (2017a,b)

50 simulations of terrestrial planet formation

100% implanted asteroid belt

Raymond & Izidoro (2017b)

NC and CC planetesimals formed far apart but were brought together by the planets' growth

Gradie & Tedesco 1982; Demeo & Carry 2014

Empty asteroid belt

- Inner ring = terrestrial planets
- Middle ring = giant planet cores
- Outer ring = primordial Kuiper belt

image from Izidoro et al (2022), but representative of lots of models (e.g., Morbidelli et al 2022)

2. The Grand Tack (Walsh et al 2011)

Pierens & Raymond (2011)

Jupiter in the gaseous disk

Jupiter and Saturn in the gaseous disk

Time

The Grand Tack model

The Grand Tack

Walsh et al 2011

Grand Tack terrestrial planets

Morbidelli et al (2012)

Can Jup and Sat really migrate outward? (maybe not)

Griveaud et al (2024)

What if the giant planet instability happened early?

(true for instability triggers I and 2)

The Early Instability model

Clement et al (2018, 2019, 2021) (also Nesvorny et al 2021; Joiret et al 2023, 2024)

Early instability terrestrial planets

Clement et al (2018, 2019, 2021, 2023)

4. Pebble-accretion scenario

(Johansen et al 2021)

Assumption: large planetesimals only form in Late giant in pretended to the form Mercury forms from iron-rich pebbles (Johansen & Dorn 2022)

The Sun's gaseous disk dissipates aftermæfew million years

Pebble-accretion scenario

Key assumption: large planetesimals only form in preferred location

5. Convergent migration of planetary embryos

Broz et al (2021)

A migration "map" (for a specified disk model)

Convergent migration model

gaseous disk

Broz et al (2021) (image from news & views by Raymond 2021)

Convergent migration model

Broz et al (2021)

Possible solutions to the small Mars problem

Later dynamical sculpting

Additional resources

- Planet Formation: key processes and global models Raymond & Morbidelli 2022 (arxiv:2002.05756)
- The Solar System's Story (planetplanet.net)

